317
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabricating TiAl alloys with various compositions by twin-wire arc AM

, &
Pages 310-319 | Received 20 Jan 2023, Accepted 21 Mar 2023, Published online: 27 Mar 2023

References

  • Garip, Y. Investigation of Isothermal Oxidation Performance of TiAl Alloys Sintered by Different Processing Methods. Intermetallics. 2020, 127, 106985. DOI: 10.1016/j.intermet.2020.106985.
  • Liu, G.; Xiong, J.; Li, D.; Zhang, G. Effect of Heat Input on Auxiliary Wire GMA-AM TiAl Alloys. Mater. Manuf. Process. 2022, 0(0), 1–10. DOI: 10.1080/10426914.2022.2072878.
  • Li, C. X.; Xia, J.; Dong, H. Sliding Wear of TiAl Intermetallics Against Steel and Ceramics of Al2o3, Si3n4 and WC/Co. Wear. 2006, 261(5), 693–701. DOI: 10.1016/j.wear.2006.01.044.
  • Swadźba, R.; Marugi, K.; Pyclik, Ł. STEM Investigations of γ-TiAl Produced by Additive Manufacturing After Isothermal Oxidation. Corros. Sci. 2020, 169, 108617. DOI: 10.1016/j.corsci.2020.108617.
  • Kothari, K.; Radhakrishnan, R.; Wereley, N. M. Advances in Gamma Titanium Aluminides and Their Manufacturing Techniques. Prog. Aerosp. Sci. 2012, 55, 1–16. DOI: 10.1016/j.paerosci.2012.04.001.
  • Djanarthany, S.; Viala, J. C.; Bouix, J. An Overview of Monolithic Titanium Aluminides Based on Ti3al and TiAl. Mater. Chem. Phys. 2001, 72(3), 301–319. DOI: 10.1016/S0254-0584(01)00328-5.
  • Tan, Y.; Fang, H.; Chen, R.; Liu, Y.; Su, Y.; Guo, J.; Cui, H.; Zhang, S.; Fu, H. Microalloying Effects of Ho on Microstructure Evolution and High Temperature Properties of Ti46al4nb1mo Alloy. Intermetallics. 2020, 126, 106883. DOI: 10.1016/j.intermet.2020.106883.
  • Guo, Y.; Xiao, S.; Chen, Y.; Tian, J.; Zheng, Z.; Xu, L. High Temperature Tensile Properties and Fracture Behavior of Y2O3-Bearing Ti-48al-2cr-2nb Alloy. Intermetallics. 2020, 126, 106933. DOI: 10.1016/j.intermet.2020.106933.
  • Kastenhuber, M.; Klein, T.; Clemens, H.; Mayer, S. Tailoring Microstructure and Chemical Composition of Advanced γ-TiAl Based Alloys for Improved Creep Resistance. Intermetallics. 2018, 97, 27–33. DOI: 10.1016/j.intermet.2018.03.011.
  • Tang, H.; Li, X.; Ma, Y.; Chen, B.; Xing, W.; Zhao, P.; Shu, L.; Zhang, M.; Liu, K. Multistep Evolution of βo Phase During Isothermal Annealing of Ti-42al-5mn Alloy: Formation of Laves Phase. Intermetallics. 2020, 126, 106932. DOI: 10.1016/j.intermet.2020.106932.
  • Li, J.; Jeffs, S.; Whittaker, M.; Martin, N. Alloying Effect on Solidification Behaviour and Grain Refinement in Ti45al2nb2ta0. 8B and Ti45al2nb2hf0. 8B. Intermetallics. 2020, 127, 106984. DOI: 10.1016/j.intermet.2020.106984.
  • Liu, Y.; Xue, X.; Tan, Y.; Fang, H.; Cui, H.; Chen, R. Microstructure Formation and Elevated Temperature Mechanical Properties of Directionally Solidified Ti44al6nb1cr Alloy. Mater. Sci. Eng. A. 2020, 797, 140038. DOI: 10.1016/j.msea.2020.140038.
  • Rajesh, K. A.; Mohan, K. S.; Pramod, R.; Pravin, K. N.; Siva, S. N.; Palguna, Y. Microstructure and Mechanical Properties of Wire Arc Additive Manufactured Bi-Metallic Structure. Sci. Technol. Weld. Join. 2021, 26(1), 47–57. DOI: 10.1080/13621718.2020.1833140.
  • Kuo, C. H.; Sridharan, N.; Han, T.; Dapino, M. J.; Babu, S. S. Ultrasonic Additive Manufacturing of 4130 Steel Using Ni Interlayers. Sci. Technol. Weld. Join. 2019, 24(5), 382–390. DOI: 10.1080/13621718.2019.1607486.
  • Ferreira, I. A.; Oliveira, J. P.; Antonissen, J.; Carvalho, H. Assessing the Impact of Fusion-Based Additive Manufacturing Technologies on Green Supply Chain Management Performance. J. Manuf. Technol. Manag. 2022, 34(1), 187–211. DOI: 10.1108/JMTM-06-2022-0235.
  • Kokare, S.; Oliveira, J. P.; Santos, T. G.; Godina, R. Environmental and Economic Assessment of a Steel Wall Fabricated by Wire-Based Directed Energy Deposition. Addit. Manuf. 2023, 61, 103316. DOI: 10.1016/j.addma.2022.103316.
  • Davidson, K. P.; Littlefair, G.; Singamneni, S. On the Machinability of Selective Laser Melted Duplex Stainless Steels. Mater. Manuf. Process. 2022, 37(12), 1446–1462. DOI: 10.1080/10426914.2021.2001513.
  • Ge, W.; Lin, F.; Guo, C. Effect of Energy Input on Microstructure and Mechanical Properties in EBSM Ti6al4v. Mater. Manuf. Process. 2018, 33(15), 1708–1713. DOI: 10.1080/10426914.2015.1048463.
  • Tian, Y.; Shen, J.; Hu, S.; Chen, X.; Cai, Y.; Han, J. Effect of Deposition Layer on Microstructure of Ti-Al Bimetallic Structures Fabricated by Wire and Arc Additive Manufacturing. Sci. Technol. Weld. Join. 2022, 27(1), 22–32. DOI: 10.1080/13621718.2021.1996850.
  • Rodrigues, T. A.; Cipriano Farias, F. W.; Zhang, K.; Shamsolhodaei, A.; Shen, J.; Zhou, N.; Schell, N.; Capek, J.; Polatidis, E.; Santos, T. G., et al. Wire and Arc Additive Manufacturing of 316L Stainless Steel/Inconel 625 Functionally Graded Material: Development and Characterization. J. Mater. Res. Technol. 2022, 21, 237–251. DOI: 10.1016/j.jmrt.2022.08.169.
  • Shen, C.; Liss, K. D.; Reid, M.; Pan, Z.; Ma, Y.; Li, X.; Li, H. In-Situ Neutron Diffraction Characterization on the Phase Evolution of γ-TiAl Alloy During the Wire-Arc Additive Manufacturing Process. J. Alloys Compd. 2019, 778, 280–287. DOI: 10.1016/j.jallcom.2018.11.150.
  • Wang, J.; Pan, Z.; Wei, L.; He, S.; Cuiuri, D.; Li, H. Introduction of Ternary Alloying Element in Wire Arc Additive Manufacturing of Titanium Aluminide Intermetallic. Addit. Manuf. 2019, 27, 236–245. DOI: 10.1016/j.addma.2019.03.014.
  • Cai, X.; Dong, B.; Yin, X.; Lin, S.; Fan, C.; Yang, C. Wire Arc Additive Manufacturing of Titanium Aluminide Alloys Using Two-Wire TOP-TIG Welding: Processing, Microstructures, and Mechanical Properties. Addit. Manuf. 2020, 35, 101344. DOI: 10.1016/j.addma.2020.101344.
  • Bevans, B.; Ramalho, A.; Smoqi, Z.; Gaikwad, A.; Santos, T. G.; Rao, P.; Oliveira, J. P. Monitoring and Flaw Detection During Wire-Based Directed Energy Deposition Using in-Situ Acoustic Sensing and Wavelet Graph Signal Analysis. Mater. Des. 2023, 225, 111480. DOI: 10.1016/j.matdes.2022.111480.
  • Rodrigues, T. A.; Duarte, V. R.; Miranda, R. M.; Santos, T. G.; Oliveira, J. P. Ultracold-Wire and Arc Additive Manufacturing (UC-WAAM). J. Mater. Process. Technol. 2021, 296, 117196. DOI: 10.1016/j.jmatprotec.2021.117196.
  • Henckell, P.; Ali, Y.; Metz, A.; Bergmann, J. P.; Reimann, J. In situ Production of Titanium Aluminides During Wire Arc Additive Manufacturing with Hot-Wire Assisted GMAW Process. Metals. 2019, 9(5), 578. DOI: 10.3390/met9050578.
  • Liu, G.; Xiong, J. External Filler Wire Based GMA-AM Process of 2219 Aluminum Alloy. Mater. Manuf. Process. 2020, 35(11), 1268–1277. DOI: 10.1080/10426914.2020.1779936.
  • Ma, Y.; Cuiuri, D.; Li, H.; Pan, Z.; Shen, C. The Effect of Postproduction Heat Treatment on γ-TiAl Alloys Produced by the GTAW-Based Additive Manufacturing Process. Mater. Sci. Eng. A. 2016, 657, 86–95. DOI: 10.1016/j.msea.2016.01.060.
  • Guoqing, C.; Binggang, Z.; Wei, L.; Jicai, F. Crack Formation and Control Upon the Electron Beam Welding of TiAl-Based Alloys. Intermetallics. 2011, 19(12), 1857–1863. DOI: 10.1016/j.intermet.2011.07.017.
  • Chaturvedi, M. C.; Xu, Q.; Richards, N. L. Development of Crack-Free Welds in a TiAl-Based Alloy. J. Mater. Process. Technol. 2001, 118(1), 74–78. DOI: 10.1016/S0924-0136(01)00870-6.
  • Xu, J.; Peng, Y.; Zhou, Q.; Fan, J.; Kong, J.; Wang, K.; Guo, S.; Zhu, J. Microstructure and Mechanical Properties of Ti-52 At% Al Alloy Synthesized in-Situ via Dual-Wires Electron Beam Freeform Fabrication. Mater. Sci. Eng. A. 2020, 798, 140232. DOI: 10.1016/j.msea.2020.140232.
  • Rittinghaus, S. K.; Molina Ramirez, V. R.; Zielinski, J.; Hecht, U. Oxygen Gain and Aluminum Loss During Laser Metal Deposition of Intermetallic TiAl. J. Laser Appl. 2019, 31(4), 042005. DOI: 10.2351/1.5096974.
  • Chen, Y.; Yue, H.; Wang, X.; Xiao, S.; Kong, F.; Cheng, X.; Peng, H. Selective Electron Beam Melting of TiAl Alloy: Microstructure Evolution, Phase Transformation and Microhardness. Mater. Charact. 2018, 142, 584–592. DOI: 10.1016/j.matchar.2018.06.027.
  • Niu, H. Z.; Chen, Y. Y.; Xiao, S. L.; Xu, L. J. Microstructure Evolution and Mechanical Properties of a Novel Beta γ-TiAl Alloy. Intermetallics. 2012, 31, 225–231. DOI: 10.1016/j.intermet.2012.07.012.
  • Seifi, M.; Salem, A. A.; Satko, D. P.; Ackelid, U.; Semiatin, S. L.; Lewandowski, J. J. Effects of HIP on Microstructural Heterogeneity, Defect Distribution and Mechanical Properties of Additively Manufactured EBM Ti-48al-2cr-2nb. J. Alloys Compd. 2017, 729, 1118–1135. DOI: 10.1016/j.jallcom.2017.09.163.
  • Shen, J.; Agrawal, P.; Rodrigues, T. A.; Lopes, J. G.; Schell, N.; He, J.; Zeng, Z.; Mishra, R. S.; Oliveira, J. P. Microstructure Evolution and Mechanical Properties in a Gas Tungsten Arc Welded Fe42mn28co10cr15si5 Metastable High Entropy Alloy. Mater. Sci. Eng. A. 2023, 867, 144722. DOI: 10.1016/j.msea.2023.144722.
  • Shen, J.; Agrawal, P.; Rodrigues, T. A.; Lopes, J. G.; Schell, N.; Zeng, Z.; Mishra, R. S.; Oliveira, J. P. Gas Tungsten Arc Welding of As-Cast AlCocrfeni2.1 Eutectic High Entropy Alloy. Mater. Des. 2022, 223, 111176. DOI: 10.1016/j.matdes.2022.111176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.