441
Views
0
CrossRef citations to date
0
Altmetric
Article

Fiber laser cutting study on ternary NiTiV shape memory alloy

, ORCID Icon & ORCID Icon
Pages 1745-1754 | Received 17 Dec 2022, Accepted 22 Mar 2023, Published online: 07 Apr 2023

References

  • Liu, J. F.; Li, C.; Fang, X. Y.; Jordon, J. B.; Guo, Y. B. Effect of Wire-EDM on Fatigue of Nitinol Shape Memory Alloy. Mater. Manuf. Process. 2018, 33, 16 1809–1814. DOI: 10.1080/10426914.2018.1512125.
  • Bisaria, H.; Shandilya, P. Processing of Curved Profiles on Ni-Rich Nickel–Titanium Shape Memory Alloy by WEDM. Mater. Manuf. Process. 2019, 34(12), 1333–1341. DOI: 10.1080/10426914.2019.1594264.
  • Bigelow, G. S.; Padula, S. A.; Garg, A.; Gaydosh, D.; Noebe, R. D. Characterization of Ternary NiTipd High-Temperature Shape-Memory Alloys Under Load-Biased Thermal Cycling. Metall. Mater. Trans A. 2010, 41(12), 3065–3079. DOI: 10.1007/s11661-010-0365-5.
  • Xin, Y.; Zhou, Y. Martensitic Transformation and Mechanical Properties of NiMngav High-Temperature Shape Memory Alloys. Intermetallics. 2016, 73, 50–57. DOI: 10.1016/j.intermet.2016.03.005.
  • Acar, E.; Kok, M.; Qader, I. N. Exploring Surface Oxidation Behavior of NiTi–V Alloys. Eur. Phys. J. Plus. 2020, 135(1), 58. DOI: 10.1140/epjp/s13360-019-00087-y.
  • Santosh, S.; Sampath, V.; Mouliswar, R. R. Hot Deformation Characteristics of NiTiv Shape Memory Alloy and Modeling Using Constitutive Equations and Artificial Neural Networks. J. Alloys Compd. 2022, 901, 163451. DOI: 10.1016/j.jallcom.2021.163451.
  • Roy, B. K.; Mandal, A. Surface Integrity Analysis of Nitinol-60 Shape Memory Alloy in WEDM. Mater. Manuf. Process. 2019, 34(10), 1091–1102. DOI: 10.1080/10426914.2019.1628256.
  • Balasubramaniyan, C.; Rajkumar, K.; Santosh, S. Wire-EDM Machinability Investigation on Quaternary Ni44Ti50Cu4Zr2 Shape Memory Alloy. Mater. Manuf. Process. 2021, 36(10), 1161–1170. DOI: 10.1080/10426914.2021.1905833.
  • Shukla, A. K.; Jayachandran, S.; Bhoyar, J. V.; Akash, K.; Mani Prabu, S. S.; Bhirodkar, S. L.; Manikandan, M.; Shiva, S.; Palani, I. A. Micro-Channel Fabrication on NiTi Shape Memory Alloy Substrate Using Nd3+: YAG Laser. Mater. Manuf. Process. 2020, 35(3), 270–278. DOI: 10.1080/10426914.2020.1718703.
  • Rao, S.; Sethi, A.; Das, A. K.; Mandal, N.; Kiran, P.; Ghosh, R.; Dixit, A. R.; Mandal, A. Fiber Laser Cutting of CFRP Composites and Process Optimization Through Response Surface Methodology. Mater. Manuf. Process. 2017, 32(14), 1612–1621. DOI: 10.1080/10426914.2017.1279296.
  • Aqeel, M.; Shariff, S. M.; Gautam, J. P.; Padmanabham, G. Liquation Cracking in Inconel 617 Alloy by Laser and Laser-Arc Hybrid Welding. Mater. Manuf. Process. 2021, 36(8), 904–915. DOI: 10.1080/10426914.2020.1866200.
  • Han, T.; Xiao, M.; Zhang, Y.; Shen, Y. Laser Cladding Ni-Ti-Cr Alloy Coatings with Different Process Parameters. Mater. Manuf. Process. 2019, 34(15), 1710–1718. DOI: 10.1080/10426914.2019.1686521.
  • Yang, J.; Sun, S.; Brandt, M.; Yan, W. Experimental Investigation and 3D Finite Element Prediction of the Heat Affected Zone During Laser Assisted Machining of Ti6al4v Alloy. J. Mater. Process. Technol. 2010, 210(15), 2215–2222. DOI: 10.1016/j.jmatprotec.2010.08.007.
  • Ahmed, N.; Rafaqat, M.; Pervaiz, S.; Umer, U.; Alkhalefa, H.; Shar, M. A.; Mian, S. H. Controlling the Material Removal and Roughness of Inconel 718 in Laser Machining. Mater. Manuf. Process. 2019, 34(10), 1169–1181. DOI: 10.1080/10426914.2019.1615082.
  • Vora, J.; Chaudhari, R.; Patel, C.; Pimenov, D. Y.; Patel, V. K.; Giasin, K.; Sharma, S. Experimental Investigations and Pareto Optimization of Fiber Laser Cutting Process of Ti6al4v. Metals (Basel). 2021, 11(9), 1461. DOI: 10.3390/met11091461.
  • Kulothungan, S.; Lakshmanan, P.; Palani, S.; Sathiyamurthy, S. Micro-Hexagonal Profile Making on Alloy276 by Fiber Laser: Desirability Approach. Mater. Manuf. Process. DOI: 10.1080/10426914.2022.2072883. (accessed May 10, 2022).
  • Muralidharan, B.; Prabu, K.; Rajamurugan, G.; Pulsed N. D. YAG Laser Machining of Nitinol: An Experimental Investigation. J. Micro Nano-Manuf. 2022, 5(2), 144–148. DOI: 10.1177/25165984211015482.
  • Feng, Y.; Hung, T. -P.; Lu, Y. -T.; Lin, Y. -F.; Hsu, F. -C.; Lin, C. -F.; Lu, Y. -C.; Lu, X.; Liang, S. Y. Surface Roughness Modeling in Laser-Assisted End Milling of Inconel 718. Mach. Sci. Technol. 2019, 23(4), 650–668. DOI: 10.1080/10910344.2019.1575407.
  • Velmurugan, C.; Senthilkumar, V.; Dinesh, S.; Arulkirubakaran, D. Machining of NiTi-Shape Memory Alloys-A Review. Mach. Sci. Technol. 2018, 22(3), 355–401. DOI: 10.1080/10910344.2017.1365894.
  • Chaki, S.; Bose, D.; Bathe, R. N. Multi-Objective Optimization of Pulsed Nd: YAG Laser Cutting Process Using Entropy-Based ANN-PSO Model. Lasers Manuf. Mater. Process. 2020, 7(1), 88–110. DOI: 10.1007/s40516-019-00109-8.
  • Nguyen, V.; Altarazi, F.; Tran, T.; Hu, J. Optimization of Process Parameters for Laser Cutting Process of Stainless Steel 304: A Comparative Analysis and Estimation with Taguchi Method and Response Surface Methodology. Math. Probl. Eng. 2022, 2022, 1–14. Article ID 6677586. DOI: 10.1155/2022/6677586.
  • Madić, M.; Mladenović, S.; Gostimirović, M.; Radovanović, M.; Janković, P. Laser Cutting Optimization Model with Constraints: Maximization of Material Removal Rate in CO2 Laser Cutting of Mild Steel. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2020, 234(10), 1323–1332. DOI: 10.1177/0954405420911529.
  • Sharma, V. K.; Kumar, V. Study on Material Transfer and Surface Properties During Fiber Laser Cutting of A653 Galvanized Steel Sheet. J. Braz. Soc. Mech. Sci. Eng. 2019, 41(8), 341. DOI: 10.1007/s40430-019-1842-4.
  • Rajčić, B.; Petronić, S.; Čolić, K.; Stević, Z.; Petrović, A.; Mišković, Ž.; Milovanović, D. Laser Processing of Ni-Based Superalloy Surfaces Susceptible to Stress Concentration. Metals (Basel). 2021, 11(5), 750. DOI: 10.3390/met11050750.
  • Hu, W.; Zhu, H.; Hu, J.; Li, B.; Qiu, C. Influence of Vanadium Microalloying on Microstructure and Property of Laser-Cladded Martensitic Stainless Steel Coating. Mater. 2020, 13(4), 826. DOI: 10.3390/ma13040826.
  • Rajamani, D.; Siva Kumar, M.; Balasubramanian, E.; Tamilarasan, A. Nd: YAG Laser Cutting of Hastelloy C276: ANFIS Modeling and Optimization Through WOA. Mater. Manuf. Process. 2021, 36(15), 1746–1760. DOI: 10.1080/10426914.2021.1942910.
  • Ullah, S.; Li, X.; Guo, G.; Riveiro Rodríguez, A.; Li, D.; Du, J.; Cui, L.; Wei, L.; Liu, X. Influence of the Fiber Laser Cutting Parameters on the Mechanical Properties and cut− Edge Microfeatures of a AA2B06−T4 Aluminum Alloy. Opt. Laser Technol. 2022, 156, 108395. DOI: 10.1016/j.optlastec.2022.108395.
  • Balasubramaniyan, C.; Santosh, S.; Rajkumar, K. Surface Quality and Morphology of NiTicuzr Shape Memory Alloy Machined Using Thermal-Energy Processes: An Examination of Comparative Topography. Surf. Topogr. Metrol. Prop. 2022, 10(3), 035019. DOI: 10.1088/2051-672X/ac8757.
  • Quintino, L.; Liu, L.; Miranda, R. M.; Silva, R. J. C.; Hu, A.; Zhou, Y. Cutting NiTi with Femtosecond Laser. Adv. Mater. Sci. Eng. 2013. 2013 1–4. DOI: 10.1155/2013/198434.
  • Levichev, N.; Vetrano, M. R.; Duflou, J. R. Melt Flow and Cutting Front Evolution During Laser Cutting with Dynamic Beam Shaping. Opt. Lasers Eng. 2023, 161, 107333. DOI: 10.1016/j.optlaseng.2022.107333.
  • Balci, E.; Dagdelen, F.; Qader, I. N.; Kok, M. Effects of Substituting Nb with V on Thermal Analysis and Biocompatibility Assessment of Quaternary NiTinbv SMA. Eur. Phys. J. Plus. 2021, 136(2), 145. DOI: 10.1140/epjp/s13360-021-01149-w.
  • Chandan, G. K.; Sahoo, C. K. Development and Analysis of Scalable Laser Machined Surface Utilizing Low Power Nanosecond Laser on Ti-6al-4V Alloy. Mater. Manuf. Process. DOI: 10.1080/10426914.2022.2116036. (accessed Aug 28, 2022).
  • Ghate, N. D.; Shrivastava, A. Laser Processing of Multiple Surface Characteristics for Ti6al4v Biomedical Implants. Mater. Manuf. Process. 2021, 36(3), 308–315. DOI: 10.1080/10426914.2020.1832686.
  • Mohammed, M. K.; Al-Ahmari, A. Laser-Machining of Micro Channels in NiTi-Based Shape-Memory Alloys: Experimental Analysis and Process Optimization. Mater. 2020, 13 (13), 2945. DOI: 10.3390/ma13132945.
  • Miraoui, I.; Boujelbene, M.; Zaied, M. High-Power Laser Cutting of Steel Plates: Heat Affected Zone Analysis. Adv. Mater. Sci. Eng. Article ID 1242565. 2016. DOI: 10.1155/2016/1242565.
  • Masoudi, S.; Mirabdolahi, M.; Dayyani, M.; Jafarian, F.; Vafadar, A.; Dorali, M. R. Development of an Intelligent Model to Optimize Heat-Affected Zone, Kerf, and Roughness in 309 Stainless Steel Plasma Cutting by Using Experimental Results. Mater. Manuf. Process. 2019, 34(3), 345–356. DOI: 10.1080/10426914.2018.1532579.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.