257
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization of cooling condition and energy parameters during laser bending of Duplex-2205

ORCID Icon & ORCID Icon
Pages 398-407 | Received 11 May 2023, Accepted 05 Jun 2023, Published online: 17 Jul 2023

References

  • Safari, M.; de Sousa, R. A.; Joudaki, J. Recent Advances in the Laser Forming Process: A Review. Metals (Basel). 2020, 10(11), 1–19. DOI: 10.3390/met10111472.
  • Shen, H.; Ran, M.; Hu, J.; Yao, Z. An Experimental Investigation of Underwater Pulsed Laser Forming. Opt. Lasers Eng. 2014, 62, 1–8. DOI: 10.1016/j.optlaseng.2014.04.011.
  • Dixit, U. S.; Joshi, S. N.; Kant, R. Laser Forming Systems: A Review. Int. J. Mechatron. Manuf. Syst. 2015, 8(3/4), 160–205. DOI: 10.1504/IJMMS.2015.073077.
  • Nath, U.; Yadav, V.; Purohit, R. Finite Element Analysis of AM30 Magnesium Alloy Sheet in the Laser Bending Process. Adv. Mater. Process. 2021, 8(2), 1803–1815. DOI: 10.1080/2374068X.2021.1878699.
  • Mucha, Z.; Widłaszewski, J.; Kurp, P.; Mulczyk, K. Mechanically Assisted Laser Forming of Thin Beams. In Laser Technology 2016: Progress and Applications of Lasers; 2016; Vol. 10159, p. 101590U. DOI: 10.1117/12.2262114.
  • Kant, R.; Joshi, S. N. Finite Element Simulation of Laser Assisted Bending with Moving Mechanical Load. Int. J. Mechatron. Manuf. Syst. 2013, 6(4), 351–366. DOI: 10.1504/IJMMS.2013.057128.
  • Fetene, B. N.; Dixit, U. S.; Davim, J. P. Laser‐Assisted Bending by Magnetic Force. J. Eng. 2017, 2017(7), 343–353. DOI: 10.1049/joe.2017.0145.
  • Dutta, P. P.; Kalita, K.; Dixit, U. S. Electromagnetic-Force-Assisted Bending and Straightening of AH36 Steel Strip by Laser Irradiation. Lasers Manuf. Mater. Process. 2018, 5(3), 201–221. DOI: 10.1007/s40516-018-0062-6.
  • Pal, Y.; Singh, B.; Kant, R.; Yadav, R. Enhancing the Bend Angle and Mechanical Properties of Mild Steel Using Fiber Laser Bending Technique Under the Influence of Electromagnetic Force. Opt. Lasers Eng. 2023, 168 (March), 107631. DOI: 10.1016/j.optlaseng.2023.107631.
  • Yadav, R.; Goyal, D. K.; Kant, R. A Comprehensive Study on the Effect of Line Energy During Laser Bending of Duplex Stainless Steel. Opt. Laser Technol. 2022, 151, 108025. DOI: 10.1016/j.optlastec.2022.108025.
  • Akinlabi, S.; Akinlabi, E. Effect of Process Parameters on Laser Beam Formed Titanium Alloy Sheet. Key Eng. Mater. 2014, 622623, 1193–1199. DOI: 10.4028/www.scientific.net/KEM.622-623.1193.
  • Majumdar, J. D.; Nath, A. K.; Manna, I. Studies on Laser Bending of Stainless Steel. Mater. Sci. Eng. A. 2004, 385(1–2), 113–122. DOI: 10.1016/j.msea.2004.06.009.
  • Seyedkashi, S. M. H.; Cho, J. R.; Lee, S. H.; Moon, Y. H. Feasibility of Underwater Laser Forming of Laminated Metal Composites. Mater. Manuf. Process. 2018, 33(5), 546–551. DOI: 10.1080/10426914.2017.1376075.
  • Edwardson, S. P.; Abed, E.; Bartkowiak, K.; Dearden, G.; Watkins, K. G. Geometrical Influences on Multi-Pass Laser Forming. J. Phys D: Appl Phys. 2006, 39(2), 382–389. DOI: 10.1088/0022-3727/39/2/021.
  • Edwardson, S. P.; Griffiths, J.; Edwards, K. R.; Dearden, G.; Watkins, K. G. Laser Forming: Overview of the Controlling Factors in the Temperature Gradient Mechanism. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2010, 224(5), 1031–1040. DOI: 10.1243/09544062JMES1776.
  • Shen, H.; Hu, J.; Yao, Z. Cooling Effects in Laser Forming. Mater. Sci. Forum. 2011, 663665, 58–63. DOI: 10.4028/www.scientific.net/MSF.663-665.58.
  • Yadav, R.; Goyal, D. K.; Kant, R. Enhancing Process Competency by Forced Cooling in Laser Bending Process. J. Therm. Stress. 2022, 45(8), 617–629. DOI: 10.1080/01495739.2022.2103057.
  • Yadav, R.; Kant, R. Improving Bend Angle by Using Forced Cooling When Laser Bending Al Sheet. Lasers Eng. 2023, 55, 75–85.
  • Yadav, R.; Goyal, D. K.; Kant, R. Multi-Scan Laser Bending of Duplex Stainless Steel Under Different Cooling Conditions. CIRP J. Manuf. Sci. Technol. 2022, 39, 345–358. DOI: 10.1016/j.cirpj.2022.10.002.
  • Yadav, R.; Kant, R. Effectiveness of Forced Cooling During Laser Bending of Duplex-2205. Mater. Manuf. Process. 2022, 1–10. DOI: 10.1080/10426914.2022.2146717.
  • Altbawi, S. M. A.; Khalid, S. B. A.; Mokhtar, A. S. B.; Shareef, H.; Husain, N.; Yahya, A.; Haider, S. A.; Moin, L.; Alsisi, R. H. An Improved Gradient-Based Optimization Algorithm for Solving Complex Optimization Problems. Processes. 2023, 11(2), 498. DOI: 10.3390/pr11020498.
  • Gramani, M. C. N.; França, P. M.; Arenales, M. N. A Linear Optimization Approach to the Combined Production Planning Model. J. Franklin. Inst. 2011, 348(7), 1523–1536. DOI: 10.1016/j.jfranklin.2010.05.010.
  • Ciurana, J.; Arias, G.; Ozel, T. Neural Network Modeling and Particle Swarm Optimization (PSO) of Process Parameters in Pulsed Laser Micromachining of Hardened AISI H13 Steel. Mater. Manuf. Process. 2009, 24(3), 358–368. DOI: 10.1080/10426910802679568.
  • He, X.; Zhang, Y.; Hong, M.; Li, J. Optimization Model of Raw Material Selection Process for Complex Industry Based on Improved Sequential Quadratic Programming Algorithm. Int. J. Comput. Intell. Syst. 2022, 15(1). DOI: 10.1007/s44196-022-00166-6.
  • Kumar Goyal, D.; Yadav, R.; Kant, R. Laser Transmission Welding of Polycarbonate Sheets Using Electrolytic Iron Powder Absorber. Opt. Laser Technol. 2023, 161(January), 109165. DOI: 10.1016/j.optlastec.2023.109165.
  • Inapakurthi, R. K.; Naik, S. S.; Mitra, K. Toward Faster Operational Optimization of Cascaded MSMPR Crystallizers Using Multiobjective Support Vector Regression. Ind. Eng. Chem. Res. 2022, 61(31), 11518–11533. DOI: 10.1021/acs.iecr.2c00526.
  • Deb, K.; Mitra, K.; Dewri, R.; Majumdar, S. Towards a Better Understanding of the Epoxy-Polymerization Process Using Multi-Objective Evolutionary Computation. Chem. Eng. Sci. 2004, 59(20), 4261–4277. DOI: 10.1016/j.ces.2004.06.012.
  • Chaudhari, R.; Vora, J. J.; Prabu, S. S. M.; Palani, I. A.; Patel, V. K.; Parikh, D. M. Pareto Optimization of WEDM Process Parameters for Machining a NiTi Shape Memory Alloy Using a Combined Approach of RSM and Heat Transfer Search Algorithm. Adv. Manuf. 2021, 9(1), 64–80. DOI: 10.1007/s40436-019-00267-0.
  • Maji, K.; Pratihar, D. K.; Nath, A. K. Analysis and Synthesis of Laser Forming Process Using Neural Networks and Neuro-Fuzzy Inference System. Soft Comput. 2013, 17(5), 849–865. DOI: 10.1007/s00500-012-0949-7.
  • Virivinti, N.; Mitra, K. Fuzzy Expected Value Analysis of an Industrial Grinding Process. Powder Technol. 2014, 268, 9–18. DOI: 10.1016/j.powtec.2014.08.001.
  • Miriyala, S. S.; Pujari, K. N. S.; Naik, S.; Mitra, K. Evolutionary Neural Architecture Search for Surrogate Models to Enable Optimization of Industrial Continuous Crystallization Process. Powder Technol. 2022, 405, 117527. DOI: 10.1016/j.powtec.2022.117527.
  • Kant, R.; Joshi, S. N.; Dixit, U. S. An Integrated FEM-ANN Model for Laser Bending Process with Inverse Estimation of Absorptivity. Mech. Adv. Mater. Mod. Process. 2015, 1(1), 1–12. DOI: 10.1186/s40759-015-0006-1.
  • Pantula, P. D.; Mitra, K. Towards Efficient Robust Optimization Using Data Based Optimal Segmentation of Uncertain Space. Reliab. Eng. Syst. Saf. 2020, 197(January 2019), 106821. DOI: 10.1016/j.ress.2020.106821.
  • Inapakurthi, R. K.; Pantula, P. D.; Miriyala, S. S.; Mitra, K. Data Driven Robust Optimization of Grinding Process Under Uncertainty. Mater. Manuf. Process. 2020, 35(16), 1870–1876. DOI: 10.1080/10426914.2020.1802042.
  • Li, Q.; Cui, Y.; Wang, J. Basic Mechanical Properties of Duplex Stainless Steel Bars and Experimental Study of Bonding Between Duplex Stainless Steel Bars and Concrete. Mater. (Basel). 2021, 14(11). DOI: 10.3390/ma14112995.
  • Francis, R.; Byrne, G. Duplex Stainless Steels—Alloys for the 21st Century. Metals (Basel). 2021, 11(5), 836. DOI: 10.3390/met11050836.
  • Tušar, T.; Member, S.; Filipiˇ, B. Visualization of Pareto Front Approximations in Evolutionary Multiobjective Optimization: A Critical Review and the Prosection Method. IEEE Trans. Evol. Comput. 2015, 19(2), 225–245. DOI: 10.1109/TEVC.2014.2313407.
  • Zan, X.; Wu, Z.; Guo, C.; Yu, Z. A Pareto-Based Genetic Algorithm for Multi-Objective Scheduling of Automated Manufacturing Systems. Adv. Mech. Eng. 2020, 12(1), 1–15. DOI: 10.1177/1687814019885294.
  • Keshtiara, M.; Golabi, S.; Tarkesh Esfahani, R. Multi-Objective Optimization of Stainless Steel 304 Tube Laser Forming Process Using GA. Eng. Comput. 2021, 37(1), 155–171. DOI: 10.1007/s00366-019-00814-0.
  • Esfahani, R. T.; Golabi, S.; Zojaji, Z. Optimization of Finite Element Model of Laser Forming in Circular Path Using Genetic Algorithms and ANFIS. Soft Comput. 2016, 20(5), 2031–2045. DOI: 10.1007/s00500-015-1622-8.
  • Varbai, B.; Pickle, T.; Májlinger, K. Development and Comparison of Quantitative Phase Analysis for Duplex Stainless Steel Weld. Period. Polytech. Mech. Eng. 2018, 62(3), 247–253. DOI: 10.3311/PPme.12234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.