399
Views
2
CrossRef citations to date
0
Altmetric
Research Article

On innovative approach in ECDM process by controlling the temperature and stirring rate of the electrolyte

, &
Pages 408-426 | Received 15 Mar 2023, Accepted 09 Jul 2023, Published online: 28 Jul 2023

References

  • Salah, K. TGV versus TSV: A Comparative Analysis. In 2016 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA); IEEE, 2016; pp 49–53. DOI: 10.1109/ACTEA.2016.7560110.
  • Delmdahl, R.; Paetzel, R. Laser Drilling of High-Density Through Glass Vias (TGVs) for 2.5D and 3D Packaging. J. Microelectron. Packag. Soc. 2014, 21(2), 53–57. DOI: 10.6117/kmeps.2014.21.2.053.
  • Kumar, S.; Dvivedi, A. On Effect of Tool Rotation on Performance of Rotary Tool Micro-Ultrasonic Machining. Mater. Manuf. Process. 2019, 34(5), 475–486. DOI: 10.1080/10426914.2018.1512130.
  • Behroozfar, A.; Razfar, M. R. Experimental and Numerical Study of Material Removal in Electrochemical Discharge Machining (ECDM). Mater. Manuf. Process. 2016, 31(4), 495–503. DOI: 10.1080/10426914.2015.1058951.
  • Kumar, S.; Dileep, P.; Mishra, K.; Arab, J.; Dixit, P. Numerical and Experimental Analysis of High - Aspect - Ratio Micro - Tool Electrode Fabrication Using Controlled Electrochemical Machining. J. Appl. Electrochem. 2020, 50(2), 169–184. DOI: 10.1007/s10800-019-01380-5.
  • Phipon, R.; Shivakoti, I.; Kalita, K.; Kibria, G.; Sharma, A.; Ghadai, R. K. Laser Beam Micro Engraving on Silicon Carbide. Mater. Manuf. Process. 2020, 35(12), 1372–1382. DOI: 10.1080/10426914.2020.1772490.
  • Singh, R. P.; Singhal, S. Investigation of Machining Characteristics in Rotary Ultrasonic Machining of Alumina Ceramic. Mater. Manuf. Process. 2017, 32(3), 309–326. DOI: 10.1080/10426914.2016.1176190.
  • Ahmed, N.; Darwish, S.; Alahmari, A. M. Laser Ablation and Laser-Hybrid Ablation Processes: A Review. Mater. Manuf. Process. 2016, 31(9), 1121–1142. DOI: 10.1080/10426914.2015.1048359.
  • Khodke, P. M.; Tidke, D. J.; Ramarao, A. V. An Analytical Model for Material Removal in Abrasive Jet Machining for Brittle Materials. Mater. Manuf. Process. 1996, 11(4), 535–554. DOI: 10.1080/10426919608947507.
  • Kannojia, H. K.; Arab, J.; Pegu, B. J.; Dixit, P. Fabrication and Characterization of Through-Glass Vias by the ECDM Process. J. Electrochem. Soc. 2019, 166(13), D531–D538. DOI: 10.1149/2.0141913jes.
  • Coteaţǎ, M.; Schulze, H. P.; Slǎtineanu, L. Drilling of Difficult-To-Cut Steel by Electrochemical Discharge Machining. Mater. Manuf. Process. 2011, 26(12), 1466–1472. DOI: 10.1080/10426914.2011.557286.
  • Huang, S. F.; Liu, Y.; Li, J.; Hu, H. X.; Sun, L. Y. Electrochemical Discharge Machining Micro-Hole in Stainless Steel with Tool Electrode High-Speed Rotating. Mater. Manuf. Process. 2014, 29(5), 634–637. DOI: 10.1080/10426914.2014.901523.
  • Jha, N. K.; Singh, T.; Dvivedi, A.; Rajesha, S. Experimental Investigations into Triplex Hybrid Process of GA-RDECDM During Subtractive Processing of Mmc’s. Mater. Manuf. Process. 2019, 34(3), 243–255. DOI: 10.1080/10426914.2018.1512126.
  • Singh, M.; Singh, S.; Kumar, S. Experimental Investigation for Generation of Micro-Holes on Silicon Wafer Using Electrochemical Discharge Machining Process. Silicon. 2020, 12(7), 1683–1689. DOI: 10.1007/s12633-019-00273-8.
  • Doloi, B.; Bhattacharyya, B.; Sorkhel, S. K. Electrochemical Discharge Machining of Non-Conducting Ceramics. Def. Sci. J. 1999, 49(4), 331–338. DOI: 10.14429/dsj.49.3846.
  • Behroozfar, A.; Razfar, M. R. Experimental Study of the Tool Wear During the Electrochemical Discharge Machining. Mater. Manuf. Process. 2016, 31(5), 574–580. DOI: 10.1080/10426914.2015.1004685.
  • B, M.; P, H. Scale Effects and a Method to Evaluate Similarity in Electrochemical Micromachining of Nitinol. Mater. Manuf. Process. 2020, 36(1), 39–47. DOI: 10.1080/10426914.2020.1813892.
  • Shinde, B.; Pawade, R. Study on Analysis of Kerf Width Variation in WEDM of Insulating Zirconia. Mater. Manuf. Process. 2021, 36(9), 1010–1018. DOI: 10.1080/10426914.2020.1854468.
  • Shamim, F. A.; Dvivedi, A.; Kumar, P. On Near-Dry Wire ECDM of Al6063/SiC/10p MMC. Mater. Manuf. Process. 2021, 36(1), 122–134. DOI: 10.1080/10426914.2020.1802044.
  • Gupta, P. K.; Dvivedi, A.; Kumar, P. Effect of Electrolytes on Quality Characteristics of Glass During ECDM. Key Eng. Mater. 2015, 658, 141–145. DOI: 10.4028/www.scientific.net/KEM.658.141.
  • Bhuyan, B. K.; Yadava, V. Experimental Study of Traveling Wire Electrochemical Spark Machining of Borosilicate Glass. Mater. Manuf. Process. 2014, 29(3), 298–304. DOI: 10.1080/10426914.2013.852216.
  • Weier, T.; Landgraf, S. The Two-Phase Flow at Gas-Evolving Electrodes: Bubble-Driven and Lorentz-Force-Driven Convection. Eur. Phys. J. Spec. Top. 2013, 220(1), 313–322. DOI: 10.1140/epjst/e2013-01816-1.
  • Arab, J.; Pawar, K.; Dixit, P. Effect of Tool-Electrode Material in Through-Hole Formation Using ECDM Process. Mater. Manuf. Process. 2021, 36(9), 1019–1027. DOI: 10.1080/10426914.2021.1885700.
  • Liu, Q.; Zhang, Q.; Zhu, G.; Wang, K.; Zhang, J.; Dong, C. Effect of Electrode Size on the Performances of Micro-EDM. Mater. Manuf. Process. 2016, 31(4), 391–396. DOI: 10.1080/10426914.2015.1059448.
  • Pu, Y.; Tong, H.; Li, J.; Li, Y.; Ji, B. Micro-SACE Scanning Process with Different Tool-Surface Roughness. Mater. Manuf. Process. 2020, 35(11), 1181–1187. DOI: 10.1080/10426914.2020.1762209.
  • Kumar, N.; Mandal, N.; Das, A. K. Micro-Machining Through Electrochemical Discharge Processes: A Review. Mater. Manuf. Process. 2020, 35(4), 363–404. DOI: 10.1080/10426914.2020.1711922.
  • Arab, J.; Dixit, P. Influence of Tool Electrode Feed Rate in the Electrochemical Discharge Drilling of a Glass Substrate. Mater. Manuf. Process. 2020, 35(15), 1749–1760. DOI: 10.1080/10426914.2020.1784936.
  • Yang, C. T.; Ho, S. S.; Yan, B. H. Micro Hole Machining of Borosilicate Glass Through Electrochemical Discharge Machining (ECDM). Key Eng. Mater. 2001, 196, 149–166. DOI: 10.4028/www.scientific.net/kem.196.149.
  • Singh, T.; Dvivedi, A. Impact of Gas Film Thickness on the Performance of RM-ECDM Process During Machining of Glass. Mater. Manuf. Process. 2022, 37(6), 652–663. DOI: 10.1080/10426914.2021.1945092.
  • Sabahi, N.; Hajian, M.; Razfar, M. R. Experimental Study on the Heat-Affected Zone of Glass Substrate Machined by Electrochemical Discharge Machining (ECDM) Process. Int. J. Adv. Manuf. Technol. 2018, 97(1–4), 1557–1564. DOI: 10.1007/s00170-018-2027-5.
  • Jawalkar, C. S.; Sharma, A. K.; Kumar, P. Innovations in Electro Chemical Discharge Machining Process Through Electrolyte Stirring and Tool Rotations. Int. J. Mach. Mach. Mater. 2020, 22(6), 487–503. DOI: 10.1504/IJMMM.2020.111354.
  • Paul, L.; George, D. ScienceDirect Effects of Preheating Electrolyte in Micro ECDM Process. Mater. Today Proc. 2018, 5(5), 11882–11887. DOI: 10.1016/j.matpr.2018.02.161.
  • Singh, T.; Dvivedi, A. On Prolongation of Discharge Regime During ECDM by Titrated Flow of Electrolyte. Int. J. Adv. Manuf. Technol. 2020, 107(3–4), 1819–1834. DOI: 10.1007/s00170-020-05126-y.
  • Elhami, S.; Razfar, M. R. Effect of Ultrasonic Vibration on the Single Discharge of Electrochemical Discharge Machining. Mater. Manuf. Process. 2018, 33(4), 444–451. DOI: 10.1080/10426914.2017.1328113.
  • Mishra, D. K.; Arab, J.; Magar, Y.; Dixit, P. High Aspect Ratio Glass Micromachining by Multi-Pass Electrochemical Discharge Based Micromilling Technique. ECS J. Solid State Sci. Technol. 2019, 8(6), 322–P331. DOI: 10.1149/2.0191906jss.
  • Goud, M.; Sharma, A. K. A Three-Dimensional Finite Element Simulation Approach to Analyze Material Removal in Electrochemical Discharge Machining. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 231(13), 2417–2428. DOI: 10.1177/0954406216636167.
  • Rahman, M. A.; Saghir, M. Z. Thermodiffusion or Soret Effect: Historical Review. Int. J. Heat Mass Transf. 2014, 73, 693–705. DOI: 10.1016/j.ijheatmasstransfer.2014.02.057.
  • Verma, A. K.; Mishra, D. K.; Pawar, K.; Dixit, P. Investigations into Surface Topography of Glass Microfeatures Formed by Pulsed Electrochemical Discharge Milling for Microsystem Applications. Microsyst. Technol. 2020, 26(6), 2105–2116. DOI: 10.1007/s00542-020-04770-4.
  • Zhang, C.; Zheng, P.; Liang, R.; Yun, K.; Jiang, X.; Yan, Z. Effects of a Magnetic Field on the Machining Accuracy for the Electrochemical Drilling of Micro Holes. Int. J. Electrochem. Sci. 2020, 15(2), 1148–1159. DOI: 10.20964/2020.02.10.
  • Yadav, V. K.; Kumar, P.; Dvivedi, A. Effect of Tool Rotation in Near-Dry EDM Process on Machining Characteristics of HSS. Mater. Manuf. Process. 2019, 34(7), 779–790. DOI: 10.1080/10426914.2019.1605171.
  • Singh, R.; Dvivedi, A.; Kumar, P. EDM of High Aspect Ratio Micro-Holes on Ti-6Al-4V Alloy by Synchronizing Energy Interactions. Mater. Manuf. Process. 2020, 35(11), 1188–1203. DOI: 10.1080/10426914.2020.1762207.
  • Paul, L.; Somashekhar, S. H. Effect of Process Parameters on Heat Affected Zone in Micro Machining of Borosilicate Glass Using μ-ECDM Process. Appl. Mech. Mater. 2014, 592–594, 224–228. DOI: 10.4028/www.scientific.net/AMM.592-594.224.
  • Gupta, P. K.; Dvivedi, A.; Kumar, P. Effect of Pulse Duration on Quality Characteristics of Blind Hole Drilled in Glass by ECDM. Mater. Manuf. Process. 2016, 31(13), 1740–1748. DOI: 10.1080/10426914.2015.1103857.
  • Elhami, S.; Razfar, M. R. Study of the Current Signal and Material Removal During Ultrasonic-Assisted Electrochemical Discharge Machining. Int. J. Adv. Manuf. Technol. 2017, 92(5–8), 1591–1599. DOI: 10.1007/s00170-017-0224-2.
  • Gupta, P. K. Effect of Electrolyte Level During Electro Chemical Discharge Machining of Glass. J. Electrochem. Soc. 2018, 165(7), E279–E281. DOI: 10.1149/2.1021807jes.
  • Singh, T.; Dvivedi, A. On Pressurized Feeding Approach for Effective Control on Working Gap in ECDM. Mater. Manuf. Process. 2018, 33(4), 462–473. DOI: 10.1080/10426914.2017.1339319.
  • Appalanaidu, B.; Dvivedi, A. On Controlling of Gas Film Shape in Electrochemical Discharge Machining Process for Fabrication of Elliptical Holes. Mater. Manuf. Process. 2021, 36(5), 558–571. DOI: 10.1080/10426914.2020.1854464.
  • Zhang, D.; Zeng, K. Evaluating the Behavior of Electrolytic Gas Bubbles and Their Effect on the Cell Voltage in Alkaline Water Electrolysis. Ind. Eng. Chem. Res. 2012, 51(42), 13825–13832. DOI: 10.1021/ie301029e.
  • Jiang, B.; Lan, S.; Wilt, K.; Ni, J. Modeling and Experimental Investigation of Gas Film in Micro-Electrochemical Discharge Machining Process. Int. J. Mach. Tools Manuf. 2015, 90, 8–15. DOI: 10.1016/j.ijmachtools.2014.11.006.
  • Singh, T.; Dvivedi, A.; Shanu, A.; Dixit, P. Experimental Investigations of Energy Channelization Behavior in Ultrasonic Assisted Electrochemical Discharge Machining. J. Mater. Process. Technol. 2021, 293(January), 117084. DOI: 10.1016/j.jmatprotec.2021.117084.
  • Maillard, P.; Despont, B.; Bleuler, H.; Wüthrich, R. Geometrical Characterization of Micro-Holes Drilled in Glass by Gravity-Feed with Spark Assisted Chemical Engraving (SACE). J. Micromech. Microeng. 2007, 17(7), 1343–1349. DOI: 10.1088/0960-1317/17/7/017.
  • Jain, V. K.; Chak, S. K. Electrochemical Spark Trepanning of Alumina and Quartz. Mach. Sci. Technol. 2000, 4(2), 277–290. DOI: 10.1080/10940340008945710.
  • Kansal, A.; Dvivedi, A.; Kumar, P. Development and Performance Study of Biomedical Porous Zinc Scaffold Manufactured by Using Additive Manufacturing and Microwave Sintering. Mater. Manuf. Process. 2022, 1–13. DOI: 10.1080/10426914.2022.2089896.
  • Tiwari, T.; Nag, A.; Pramanik, A.; Dixit, A. R. A Comparative Study of Spark Assisted Bending Process Using Teaching–Learning Based Optimization, Desirability Approach and Genetic Algorithm. Appl. Soft Comput. 2022, 130, 109712. DOI: 10.1016/j.asoc.2022.109712.
  • Singh, B.; Agarwal, R. D. Development and Optimization of Controlled Release Microcapsules of Diltiazem Hydrochloride. Indian J. Pharm. Sci. 2002, 64(4), 378–385.
  • Rathore, R. S.; Dvivedi, A. Sonication of Tool Electrode for Utilizing High Discharge Energy During ECDM. Mater. Manuf. Process. 2020, 35(4), 415–429. DOI: 10.1080/10426914.2020.1718699.
  • Le Bideau, D.; Mandin, P.; Benbouzid, M.; Kim, M.; Sellier, M. Review of Necessary Thermophysical Properties and Their Sensitivities with Temperature and Electrolyte Mass Fractions for Alkaline Water Electrolysis Multiphysics Modelling. Int. J. Hydrogen. Energy. 2019, 44(10), 4553–4569. DOI: 10.1016/j.ijhydene.2018.12.222.
  • Jalali, M.; Maillard, P.; Wüthrich, R. Toward a Better Understanding of Glass Gravity-Feed Micro-Hole Drilling with Electrochemical Discharges. J. Micromech. Microeng. 2009, 19, 4. DOI: 10.1088/0960-1317/19/4/045001.
  • Fascio, V.; Langen, H. H.; Bleuler, H.; Comninellis, C. Investigations of the Spark Assisted Chemical Engraving. Electrochem. Commun. 2003, 5(3), 203–207. DOI: 10.1016/S1388-2481(03)00018-3.
  • Appalanaidu, B.; Dvivedi, A. On Controlling of Gas Film Shape in Electrochemical Discharge Machining Process for Fabrication of Elliptical Holes. Mater. Manuf. Process. 2021, 36(5), 558–571. DOI: 10.1080/10426914.2020.1854464.
  • Derringer, G.; Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 1980, 12(4), 214–219. DOI: 10.1080/00224065.1980.11980968.
  • Antil, P. Modelling and Multi-Objective Optimization During ECDM of Silicon Carbide Reinforced Epoxy Composites. Silicon. 2020, 12(2), 275–288. DOI: 10.1007/s12633-019-00122-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.