106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of Ca-alloyed and HAp-reinforced magnesium matrix surface composite properties developed by friction stir processing

, , , &
Pages 778-786 | Received 29 Aug 2023, Accepted 02 Oct 2023, Published online: 30 Nov 2023

References

  • Ezhilmaran, V.; Suya Prem Anand, P.; Kannan, S.; Sivashanmugam, N.; Jayakrishna, K.; Kalusuraman, G. Review of Bioresorbable AZ91, AZ31 and Mg–Zn–Ca Implants and Their Manufacturing Methods. Mater. Sci. Technol. 2022, 39(8), 901–925. DOI: 10.1080/02670836.2022.2153207.
  • Khalili, V.; Moslemi, S.; Ruttert, B.; Frenzel, J.; Theisen, W.; Eggeler, G. Surface Metal Matrix Nano-Composite of Magnesium/Hydroxyapatite Produced by Stir-Centrifugal Casting. Surf. Coat. Technol. 2021, 406, 126654. DOI: 10.1016/j.surfcoat.2020.126654.
  • Bharti, S.; Ghetiya, N. D.; Patel, K. M. A Review on Manufacturing the Surface Composites by Friction Stir Processing. Mater. Manuf. Processes. 2020, 36(2), 135–170. DOI: 10.1080/10426914.2020.1813897.
  • Rahul, A.; Mukherjee, M.; Das, D.; Datta, S. Impact of Particle Addition and Aging on the Friction Stir Processed Magnesium Matrix Surface Composite Properties. JOM. 2023, 75(8), 2974–2988. DOI: https://doi.org/10.1007/s11837-023-05714-9.
  • Ramezanzade, S.; Ebrahimi, G.; Parizi, M. T.; Ezatpour, H. Microstructure and Mechanical Characterizations of Graphene Nanoplatelets-Reinforced Mg–Sr–Ca Alloy as a Novel Composite in Structural and Biomedical Applications. J. Compos. Mater. 2019, 54(5), 711–728. DOI: 10.1177/0021998319867464.
  • Satish Kumar, T.; S, S.; Thankachan, T. Friction Stir Processing Based Surface Modification of AZ31 Magnesium Alloy. Mater. Manuf. Processes. 2023, 1–10. DOI: 10.1080/10426914.2023.2165670.
  • Zang, Q.; Chen, H.; Zhang, J.; Wang, L.; Chen, S.; Jin, Y. M. Microstructure, Mechanical Properties and Corrosion Resistance of AZ31/GNPs Composites Prepared by Friction Stir Processing. J. Mater. Res. Technol. 2021, 14, 195–201. DOI: 10.1016/j.jmrt.2021.06.052.
  • Singla, S.; Sagar, P.; Handa, A. Magnesium-Based Nanocomposites Synthesized Using Friction Stir Processing: An Experimental Study. Mater. Manuf. Processes. 2023, 1–18. DOI: 10.1080/10426914.2023.2195909.
  • Babu, N.; Megalingam, A. M. Mechanical and Tribological Characterization of ZrB2 Reinforced AZ31B Surface Coatings Made by Friction Stir Processing. J. Adhes. Sci. Technol. 2022, 37(2), 195–212. DOI: 10.1080/01694243.2022.2029093.
  • Rezaeian-Delouei, M.; Abdollah-Pour, H.; Tajally, M.; Mousavizade, S. M. Investigation of Microstructure and Wear Resistance of AZ31–SiO2 Surface Nanocomposite by Friction Stir Processing. Phys. Met. Metallogr. 2020, 121(13), 1347–1357. DOI: 10.1134/s0031918x20130177.
  • Yapici, G. G.; Sajadifar, S. V.; Hosseinzadeh, A.; Wegener, T.; Sobrero, C.; Engelhardt, A.; Niendorf, T. Effect of Friction Stir Processing on the Fatigue Performance of AZ31 Magnesium Alloy. Adv. Eng. Mater. 2023, 25(10), 2201638. DOI: https://doi.org/10.1002/adem.202201638.
  • Gupta, S.; Sharma, A. K.; Agrawal, D.; Lanagan, M. T.; Sikora, E.; Singh, I. Characterization of AZ31/HA Biodegradable Metal Matrix Composites Manufactured by Rapid Microwave Sintering. Materials. 2023, 16(5), 1905. DOI: 10.3390/ma16051905.
  • Vidal, C.; Alves, P.; Alves, M. M.; Carmezim, M. J.; Fernandes, M. H.; Grenho, L.; Inácio, P. L.; Ferreira, F. B.; Santos, T. G.; Santos, C. Fabrication of a Biodegradable and Cytocompatible Magnesium/Nanohydroxyapatite/Fluorapatite Composite by Upward Friction Stir Processing for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2022, 129, 105137. DOI: 10.1016/j.jmbbm.2022.105137.
  • Hanas, T.; Sampath Kumar, T. S.; Perumal, G.; Doble, M.; Ramakrishna, S. Electrospun PCL/HA Coated Friction Stir Processed AZ31/HA Composites for Degradable Implant Applications. J. Mater. Process. Technol. 2018, 252, 398–406. DOI: 10.1016/j.jmatprotec.2017.10.009.
  • Ahmadkhaniha, D.; Asadi, P. Mechanical Alloying by Friction Stir Processing. Advances in Friction Stir Welding and Processing (Eds Givi, M. K. B., Asadi P.; Woodhead Publishing: Cambridge, UK, pp. 387–426. 10.1533/9780857094551.387
  • Shi, Q.; Natarajan, A. R.; Van der Ven, A.; Allison, J. Partitioning of Ca to Metastable Precipitates in a Mg-Rare Earth Alloy. Mater. Res. Lett. 2022, 11(3), 222–230. DOI: 10.1080/21663831.2022.2138724.
  • Fayomi, J.; Popoola, A. P. I.; Popoola, O. M.; Aigbodon, V. S. Magnesium-Based Composite by Nano-Nucleation of β-Mg17Al12 Using Spark Plasma Sintering Route for Advanced Structural Application. J. Mater. Res. Technol. 2023, 24, 1547–1561. DOI: 10.1016/j.jmrt.2023.03.089.
  • Radha, R.; Sreekanth, D. Insight of Magnesium Alloys and Composites for Orthopedic Implant Applications – a Review. J. Magnesium Alloys. 2017, 5(3), 286–312. DOI: 10.1016/j.jma.2017.08.003.
  • Mukherjee, M.; Pal, T. K. Effect of Modes of Metal Transfer and Microstructure on Corrosion Behavior of Welded Modified Ferritic Stainless Steel in Acidic Environments. J. Appl. Electrochem. 2012, 43(3), 347–365. DOI: 10.1007/s10800-012-0511-4.
  • ASTM International G102-89. Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements; ASTM International: West Conshohocken, PA, 2023. accessed March 24, 2023 https://www.astm.org/g0102-89r15e01.html
  • Yang, Y.; Deng, Y.; Zhang, R.; Su, Y.; Liu, S.; Gourlay, C. M.; Zeng, G. Influence of β-Mg17Al12 and Al-Mn Intermetallic Compounds on the Corrosion Behaviour of Cast and Solution Treated Mg-Al-Zn-Mn Alloys. Corros. Sci. 2023, 222, 111363. DOI: 10.1016/j.corsci.2023.111363.
  • Mohamed, A.; El-Aziz, A. M.; Breitinger, H. G. Study of the Degradation Behavior and the Biocompatibility of Mg–0.8Ca Alloy for Orthopedic Implant Applications. J. Magnesium Alloys. 2019, 7(2), 249–257. DOI: 10.1016/j.jma.2019.02.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.