106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Non-contact flank modifications of spur gears using cathodic gear tools and mechanisms: an experimental study

, & ORCID Icon
Pages 720-734 | Received 03 Jun 2023, Accepted 25 Sep 2023, Published online: 30 Nov 2023

References

  • Feng, K.; Ji, J. C.; Ni, Q.; Beer, M. A Review of Vibration-Based Gear Wear Monitoring and Prediction Techniques. Mech. Sys. Signal. Proc. 2023, 182, 109605. DOI: 10.1016/j.ymssp.2022.109605.
  • Anderson, N. E.; Loewenthal, S. H. Design of Spur Gears for Improved Efficiency. Trans. ASME: J. Mech. Des. 1982, 104(4), 767–774. DOI: 10.1115/1.3256434.
  • Fatourehchi, E.; Mohammadpour, M.; King, P. D.; Rahnejat, H.; Trimmer, G.; Williams, A. Microgeometrical Tooth Profile Modification Influencing Efficiency of Planetary Hub Gears. Int. J. Powertrains. 2018, 7(1/2/3), 162–179. DOI: 10.1504/IJPT.2018.10011451.
  • Thamba, N. B.; Tambare, A. M.; Ananthanarayanan, K. C.; Duraiswamy, R. P.; Thangavelu, S.; Pillai, R. K. E.; Mangalaraja, R. V. Study of Effect of Linear Tip Relief Modification in Power Transmission Efficiency of Spur Gears. Arch. Acous. 2020, 45(2), 271–282. DOI: 10.24425/aoa.2020.133148.
  • Zou, T.; Shaker, M.; Angeles, J.; Morozov, A. An Innovative Tooth Root Profile for Spur Gears and Its Effect on Service Life. Meccanica. 2017, 52(8), 1825–1841. DOI: 10.1007/s11012-016-0519-7.
  • Ghosh, S. S.; Chakraborty, G. On Optimal Tooth Profile Modification for Reduction of Vibration and Noise in Spur Gear Pairs. Mech. Mach. Theory. 2016, 105, 145–163. DOI: 10.1016/j.mechmachtheory.2016.06.008.
  • Chong, T. H.; Myong, J. H.; Kim, K. T. Tooth Modification of Helical Gears for Minimization of Vibration and Noise. Int. J. Korean Soc. Precis. Engg. 2001, 2(4), 5–11. https://www.koreascience.or.kr/article/JAKO200111920887791.pdf.
  • Jelaska, D. Gears and Gear Drives; John Wiley & Sons Ltd: Chichester, UK, 2012. DOI: 10.1002/9781118392393.
  • ISO Standard, 21771: 2007. Gears - Cylindrical Involute Gears and Gear Pairs–Concepts and Geometry; ISO: Geneva, Switzerland. https://www.iso.org/standard/35989.html
  • Yang, J.; Zhang, H.; Li, T.; Gao, Z.; Nie, S.; Wei, B. A Profile Dressing Method for Grinding Worm Used for Helical Gear with Higher Order Modification Profile. Int. J. Adv. Manuf. Technol. 2018, 99(1–4), 161–168. DOI: 10.1007/s00170-018-2459-y.
  • Yu, B.; Kou, H.; Zhao, B.; Shi, Z.; Sun, Y.; Wu, G. Approximation Model for Longitudinal-Crowned Involute Helical Gears with Flank Twist in Continuous Generating Grinding. Int. J. Adv. Manuf. Technol. 2021, 114(11), 3675–94. DOI: 10.1007/s00170-021-07099-y.
  • Tian, X.; Li, D.; Huang, X.; Liu, H.; Han, J.; Xia, L. A Topological Flank Modification Method Based on Contact Trace Evaluated Genetic Algorithm in Continuous Generating Grinding. Mech. Mach. Theory. 2022, 172, 104820. DOI: 10.1016/j.mechmachtheory.2022.104820.
  • Yu, B.; Shi, Z.; Lin, J. Topology Modification Method Based on External Tooth-Skipped Gear Honing. Int. J. Adv. Manuf. Technol. 2017, 92(9–12), 4561–4570. DOI: 10.1007/s00170-017-0463-2.
  • Liu, J. H.; Hung, C. H.; Chang, S. L. Design and Manufacture of Plunge Shaving Cutter for Shaving Gears with Tooth Modifications. Int. J. Adv. Manuf. Technol. 2009, 43(9–10), 1024–1034. DOI: 10.1007/s00170-008-1783-z.
  • Zheng, F.; Zhang, M.; Zhang, W.; Guo, X. Research on the Tooth Modification in Gear Skiving. Trans. ASME: J. Mech. Des. 2018, 140(8), 084502. DOI: 10.1115/1.4040268.
  • Hsu, R. H.; Fong, Z. H. Novel Variable-Tooth-Thickness Hob for Longitudinal Crowning in the Gear-Hobbing Process. Mech. Mach. Theory. 2011, 46(8), 1084–1096. DOI: 10.1016/j.mechmachtheory.2011.03.007.
  • Tran, V. T.; Hsu, R. H.; Tsay, C. B. Study on the Anti-Twist Helical Gear Tooth Flank with Longitudinal Tooth Crowning. Trans. ASME: J. Mech. Des. 2014, 136(6), 061007. DOI: 10.1115/1.4027166.
  • Jain, N. K.; Petare, A. C. Review of Gear Finishing Processes. In Comprehensive Materials Finishing; Hashmi, S., Ed.; Elsevier Science: Oxford (UK), 2017; pp 93–120. DOI: 10.1016/B978-0-12-803581-8.09150-5.
  • Wang, L.; Tang, X.; Wang, L.; Yang, N.; Chen, X.; Li, P.; Liu, G.; Liu, G. Mechanism of Grinding-Induced Burns and Cracks in 20CrMnTi Steel Gear. Mater. Manuf. Process. 2019, 34(10), 1143–1150. DOI: 10.1080/10426914.2019.1605173.
  • Ren, Z.; Fang, Z.; Kizaki, T.; Feng, Y.; Nagata, T.; Komatsu, Y.; Sugita, N. Understanding Local Cutting Features Affecting Surface Integrity of Gear Flank in Gear Skiving. Int. J. Mach. Tools Manuf. 2022, 172, 103818. DOI: 10.1016/j.ijmachtools.2021.103818.
  • Yi, J.; Zheng, J.; Yang, T.; Xia, D.; Hu, D. Solving the Control Problem for Electrochemical Geartooth-Profile Modification Using an Artificial Neural Network. Int. J. Adv. Manuf. Technol. 2002, 19(1), 8–13. DOI: 10.1007/PL00003970.
  • Pang, G. B.; Xu, W. J.; Zhou, J. J.; Li, D. M. Gear Finishing and Modification Compound Process by Pulse Electrochemical Finishing with a Moving Cathode. Adv. Mater. Res. 2010, 126-128, 533–538. DOI: 10.4028/www.scientific.net/AMR.126-128.533.
  • McGeough, J. A. Advanced Methods of Machining; Springer: Netherlands, 1988.
  • Pathak, S.; Jain, N. K.; Palani, I. A. Effect of Applied Voltage and Electrolyte Parameters on Pitch, Runout, Topography and Finishing Productivity of the Straight Bevel Gears in PECH Process. Mater. Manuf. Process. 2017, 32(3), 339–347. DOI: 10.1080/10426914.2016.1198022.
  • Leese, R. J.; Ivanov, A. Electrochemical Micromachining: An Introduction. Advances In Mechanical Engineering. 2016, 8(1), 168781401562686. DOI: 10.1177/1687814015626860.
  • Rana, V.; Jain, N. K.; Pathak, S. Investigations on Tip Relieving of Spur Gears by Non-Contact Process. Mater. Manuf. Processes. 2023, 38(13), 1–9. DOI: 10.1080/10426914.2023.2176877.
  • Gimpert, D. Gear Inspection: Troubleshooting Tips. Gear Solutions. 2007, 5(47), 36–43. https://gearsolutions.com/media/uploads/uploads/assets/PDF/Articles/Koepfer0207.pdf (accessed Jun 20, 2022).
  • Tadepalli, A.; Pujari, K. N.; Mitra, K. A. Crystallization Case Study Toward Optimization of Expensive to Evaluate Mathematical Models Using Bayesian Approach. Materials And Manufacturing Processes. 2023, 38(16), 1–8. DOI: 10.1080/10426914.2023.2238051.
  • Pantula, P. D.; Miriyala, S. S.; Mitra, K. KERNEL: Enabler to Build Smart Surrogates for Online Optimization and Knowledge Discovery. Mater. Manuf. Process. 2017, 32(10), 1162–1171. DOI: 10.1080/10426914.2016.1269918.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.