74
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evolution mechanism of the rough surface in vibratory finishing within restricted space

, ORCID Icon, &
Pages 825-833 | Received 30 Aug 2023, Accepted 05 Oct 2023, Published online: 04 Dec 2023

References

  • Mediratta, R.; Ahluwalia, K.; Yeo, S. H. State-Of-The-Art on Vibratory Finishing in the Aviation Industry: An Industrial and Academic Perspective. Int. J. Adv. Manuf. Technol. 2016, 85(1–4), 415–429. DOI: 10.1007/s00170-015-7942-0.
  • Kou, B.; Cao, Y.; Li, J.; Xia, C.; Li, Z.; Dong, H.; Zhang, A.; Zhang, J.; Kob, W.; Wang, Y. Granular Materials Flow like Complex Fluids. Nature. 2017, 551(7680), 360–363. DOI: 10.1038/nature24062.
  • Zhong, Z.-W. Advanced Polishing, Grinding and Finishing Processes for Various Manufacturing Applications: A Review. Mater. Manuf. Process. 2020, 35(12), 1279–1303. DOI: 10.1080/10426914.2020.1772481.
  • Hao, Y.; Yang, S.; Li, X.; Li, W.; Wang, X. Analysis of Contact Force Characteristics of Vibratory Finishing within Pipe-Cavity. Granular Matter. 2021, 23(2), 32. DOI: 10.1007/s10035-021-01089-3.
  • Hao, Y.; Yang, S.; Li, D.; Li, W.; Li, X. Vibratory Finishing for the Cavity of Aero-Engine Integral Casting Casing: Mechanism Analysis and Performance Evaluation. Int. J. Adv. Manuf. Technol. 2023, 125(1–2), 713–729. DOI: 10.1007/s00170-022-10728-9.
  • Yabuki, A.; Baghbanan, M. R.; Spelt, J. K. Contact Forces and Mechanisms in a Vibratory Finisher. Wear. 2002, 252(7–8), 635–643. DOI: 10.1016/S0043-1648(02)00016-9.
  • Micallef, C.; Walton, K.; Zhuk, Y.; Aria, A. I. Surface Finishing and Residual Stress Improvement of Chemical Vapour Deposited Tungsten Carbide Hard Coatings by Vibratory Polishing. Surf. Coat. Technol. 2022, 439, 128447. DOI: 10.1016/j.surfcoat.2022.128447.
  • Shao, W.; Hou, Y.; Tang, J.; Liu, Q.; Ding, H.; Li, Z. On the Predictive Modeling of Surface Micro-Topography in Vibratory Polishing of Aeronautic Gear Considering Initial Workpiece Topography. Int. J. Adv. Manuf. Technol. 2023, 126(3–4), 1553–1565. DOI: 10.1007/s00170-023-11134-5.
  • Yang, S.; Li, W. Surface Finishing Theory and New Technology; Springer: Berlin Heidelberg: Berlin, Heidelberg, 2018. DOI: 10.1007/978-3-662-54133-3.
  • Wong, B. J.; Majumdar, K.; Ahluwalia, K.; Yeo, S. H. Effects of High Frequency Vibratory Finishing of Aerospace Components. J. Mech. Sci. Technol. 2019, 33(4), 1809–1815. DOI: 10.1007/s12206-019-0333-y.
  • Hashimoto, Y.; Ito, T.; Nakayama, Y.; Furumoto, T.; Hosokawa, A. Fundamental Investigation of Gyro Finishing Experimental Investigation of Contact Force Between Cylindrical Workpiece and Abrasive Media Under Dry Condition. Precis. Eng. 2021, 67, 123–136. DOI: 10.1016/j.precisioneng.2020.09.009.
  • Sangid, M. D.; Stori, J. A.; Ferriera, P. M. Process Characterization of Vibrostrengthening and Application to Fatigue Enhancement of Aluminum Aerospace Components—Part II: Process Visualization and Modeling. Int. J. Adv. Manuf. Technol. 2011, 53(5–8), 561–575. DOI: 10.1007/s00170-010-2858-1.
  • Sangid, M. D.; Stori, J. A.; Ferriera, P. M. Process Characterization of Vibrostrengthening and Application to Fatigue Enhancement of Aluminum Aerospace Components—Part I. Experimental Study of Process Parameters. Int. J. Adv. Manuf. Technol. 2011, 53(5–8), 545–560. DOI: 10.1007/s00170-010-2857-2.
  • Canals, L.; Badreddine, J.; McGillivray, B.; Miao, H. Y.; Levesque, M. Effect of Vibratory Peening on the Sub-Surface Layer of Aerospace Materials Ti-6Al-4V and E-16NiCrMo13. J. Mater. Process. Technol. 2019, 264, 91–106. DOI: 10.1016/j.jmatprotec.2018.08.023.
  • Hashimoto, F.; Johnson, S. P.; Chaudhari, R. G. Modeling of Material Removal Mechanism in Vibratory Finishing Process. CIRP Ann.-Manuf. Technol. 2016, 65(1), 325–328. DOI: 10.1016/j.cirp.2016.04.011.
  • Makiuchi, Y.; Hashimoto, F.; Beaucamp, A. Model of Material Removal in Vibratory Finishing, Based on Preston’s Law and Discrete Element Method. CIRP Ann.-Manuf. Technol. 2019, 68(1), 365–368. DOI: 10.1016/j.cirp.2019.04.082.
  • Hashimoto, F.; Yamaguchi, H.; Krajnik, P.; Wegener, K.; Chaudhari, R.; Hoffmeister, H.-W.; Kuster, F. Abrasive Fine-Finishing Technology. CIRP Annals. 2016, 65(2), 597–620. DOI: 10.1016/j.cirp.2016.06.003.
  • Shi, H.; Yang, S.; Li, X.; Li, W.; Zhang, H. Material Removal Mechanism of Aluminium Alloy in Barrel Finishing Under Grinding Fluid. Mater. Manuf. Process. 2021, 36(9), 1049–1059. DOI: 10.1080/10426914.2021.1885703.
  • Prakasam, P. K.; Castagneand, S.; Subbiah, S. Mechanism of Surface Evolution in Vibratory Media Finishing. In 43rd North American Manufacturing Research Conference, Namrc 43; Shih, A. J. Wang, L. H., Eds.; Elsevier Science Bv: Amsterdam, 2015; Vol. 1, pp 628–636. DOI: 10.1016/j.promfg.2015.09.052.
  • Wan, S.; Liu, Y. C.; Woon, K. S. A Simple General Process Model for Vibratory Finishing. Int. J. Adv. Manuf. Technol. 2016, 86(9–12), 2393–2400. DOI: 10.1007/s00170-016-8379-9.
  • He, B.-F.; Wei, C.-E.; Liu, B.-X.; Ding, S.-Y.; Shi, Z.-Y. Three-Dimensional Surface Roughness Characterization and Application. Guangxue Jingmi Gongcheng/Opt. Precis. Eng. 2018, 26(8), 1994–2011. DOI: 10.3788/OPE.20182608.1994.
  • Average Roughness https://michmet.com/glossary-term/average-roughness/ (accessed Jun 19, 2023).
  • Dong, W. P.; Sullivan, P. J.; Stout, K. J. Comprehensive Study of Parameters for Characterising Three- Dimensional Surface Topography: III: Parameters for Characterising Amplitude and Some Functional Properties. Wear. 1994, 178(1), 29–43. DOI: 10.1016/0043-1648(94)90127-9.
  • Patnaik Durgumahanti, U. S.; Singh, V.; Venkateswara Rao, P. A New Model for Grinding Force Prediction and Analysis. Int. J. Mach. Tools Manuf. 2010, 50(3), 231–240. DOI: 10.1016/j.ijmachtools.2009.12.004.
  • Pawlus, P.; Reizer, R.; Wieczorowski, M.; Królczyk, G. Parametric Description of One-Process Surface Texture. Measurement. 2022, 204, 112066. DOI: 10.1016/j.measurement.2022.112066.
  • Uhlmann, E.; Dethlefs, A.; Eulitz, A. Investigation of Material Removal and Surface Topography Formation in Vibratory Finishing. In 6th Cirp International Conference on High Performance Cutting (hpc2014); Dornfeld, D. Helu, M., Eds.; Elsevier Science Bv: Amsterdam, 2014; Vol. 14, pp 25–30. DOI: 10.1016/j.procir.2014.03.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.