410
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Post-processing techniques for metal Additive Manufactured products: role and contribution of abrasive media assisted finishing

, , &
Pages 737-760 | Received 24 Jun 2023, Accepted 25 Sep 2023, Published online: 12 Dec 2023

References

  • Uribe-Lam, E.; Treviño-Quintanilla, C. D.; Cuan-Urquizo, E.; Olvera-Silva, O. Use of Additive Manufacturing for the Fabrication of Cellular and Lattice Materials: A Review. Mater. Manuf. Process. 2021, 36(3), 257–280. DOI: 10.1080/10426914.2020.1819544.
  • Kansal, A.; Dvivedi, A.; Kumar, P. Development and Performance Study of Biomedical Porous Zinc Scaffold Manufactured by Using Additive Manufacturing and Microwave Sintering. Mater. Manuf. Process. 2023, 38(8), 1020–1032. DOI: 10.1080/10426914.2022.2089896.
  • Parmar, H.; Khan, T.; Tucci, F.; Umer, R.; Carlone, P. Advanced Robotics and Additive Manufacturing of Composites: Towards a New Era in Industry 4.0. Mater. Manuf. Process. 2022, 37(5), 483–517. DOI: 10.1080/10426914.2020.1866195.
  • Wu, Q.; Lu, J.; Liu, C.; Shi, X.; Ma, Q.; Tang, S.; Fan, H.; Ma, S. Obtaining Uniform Deposition with Variable Wire Feeding Direction During Wire-Feed Additive Manufacturing. Mater. Manuf. Process. 2017, 32(16), 1881–1886. DOI: 10.1080/10426914.2017.1364860.
  • Davidson, K.; Singamneni, S. Selective Laser Melting of Duplex Stainless Steel Powders: An Investigation. Mater. Manuf. Process. 2016, 31(12), 1543–1555. DOI: 10.1080/10426914.2015.1090605.
  • Lee, J.-Y.-Y.; Nagalingam, A. P.; Yeo, S. H. A Review on the State-Of-The-Art of Surface Finishing Processes and Related ISO/ASTM Standards for Metal Additive Manufactured Components. Virtual Phys. Prototyp. 2021, 16(1), 68–96. DOI: 10.1080/17452759.2020.1830346.
  • Maleki, E.; Bagherifard, S.; Bandini, M.; Guagliano, M. Surface Post-Treatments for Metal Additive Manufacturing: Progress, Challenges, and Opportunities. Addit. Manuf. 2021, 37(September), 101619. DOI: 10.1016/j.addma.2020.101619.
  • Zhong, Z.-W. Advanced Polishing, Grinding and Finishing Processes for Various Manufacturing Applications: A Review. Mater. Manuf. Process. 2020, 35(12), 1279–1303. DOI: 10.1080/10426914.2020.1772481.
  • Basha, S. M.; Bhuyan, M.; Basha, M. M.; Venkaiah, N.; Sankar, M. R. Laser Polishing of 3D Printed Metallic Components: A Review on Surface Integrity. Mater. Today Proc. 2020, 26, 2047–2054. DOI: 10.1016/j.matpr.2020.02.443.
  • Basha, M. M.; Basha, S. M.; Jain, V. K.; Sankar, M. R. State of the Art on Chemical and Electrochemical Based Finishing Processes for Additive Manufactured Features. Addit. Manuf. 2022, 58, 103028. DOI: 10.1016/j.addma.2022.103028.
  • Basha, S.; Venkaiah, N.; Srivatsan, T, and Sankar, M. A review on severe plastic deformation based post-processes for metal additive manufactured complex features. Materials and Manufacturing Processes. 2023, 1–19. DOI: 10.1080/10426914.2023.2244033.
  • Wang, A. C.; Cheng, K. C.; Chen, K. Y.; Lin, Y.-C. Enhancing the Surface Precision for the Helical Passageways in Abrasive Flow Machining. Mater. Manuf. Process. 2014, 29(2), 153–159. DOI: 10.1080/10426914.2013.852204.
  • Sambharia, J. K.; Mali, H. S.; Garg, V. Experimental Investigation on Unidirectional Abrasive Flow Machining of Trim Die Workpiece. Mater. Manuf. Process. 2018, 33(6), 651–660. DOI: 10.1080/10426914.2017.1364847.
  • Basha, S. M.; Basha, M. M.; Venkaiah, N.; Sankar, M. R. A Review on Abrasive Flow Finishing of Metal Matrix Composites. Mater. Today Proc. 2020, 44(1), 579–586. DOI: 10.1016/j.matpr.2020.10.353.
  • Petare, A. C.; Jain, N. K. Improving Spur Gear Microgeometry and Surface Finish by AFF Process. Mater. Manuf. Process. 2018, 33(9), 923–934. DOI: 10.1080/10426914.2017.1376074.
  • Singh, S.; Shan, H. S.; Kumar, P. Experimental Studies on Mechanism of Material Removal in Abrasive Flow Machining Process. Mater. Manuf. Process. 2008, 23(7), 714–718. DOI: 10.1080/10426910802317110.
  • Dixit, N.; Sharma, V.; Kumar, P. Experimental Investigations into Ultrasonic Assisted Magnetic Abrasive Flow Machining Process. Mater. Manuf. Process. 2022, 38(10), 1–16.
  • Uhlmann, E.; Schmiedel, C.; Wendler, J. CFD Simulation of the Abrasive Flow Machining Process. Procedia. CIRP. 2015, 31, 209–214. DOI: 10.1016/j.procir.2015.03.091.
  • Bremerstein, T.; Potthoff, A.; Michaelis, A.; Schmiedel, C.; Uhlmann, E.; Blug, B.; Amann, T. Wear of Abrasive Media and Its Effect on Abrasive Flow Machining Results. Wear. 2015, 342–343, 44–51. DOI: 10.1016/j.wear.2015.08.013.
  • Duval-Chaneac, M. S.; Han, S.; Claudin, C.; Salvatore, F.; Bajolet, J.; Rech, J. Characterization of Maraging Steel 300 Internal Surface Created by Selective Laser Melting (SLM) After Abrasive Flow Machining (AFM). Procedia. CIRP. 2018, 77, 359–362. Elsevier B.V. DOI: 10.1016/j.procir.2018.09.035.
  • Duval-Chaneac, M. S.; Han, S.; Claudin, C.; Salvatore, F.; Bajolet, J.; Rech, J. Experimental Study on Finishing of Internal Laser Melting (SLM) Surface with Abrasive Flow Machining (AFM). Precis. Eng. 2018, 54(February), 1–6. DOI: 10.1016/j.precisioneng.2018.03.006.
  • Peng, C.; Fu, Y.; Wei, H.; Li, S.; Wang, X.; Gao, H. Study on Improvement of Surface Roughness and Induced Residual Stress for Additively Manufactured Metal Parts by Abrasive Flow Machining. Procedia. CIRP. 2018, 71, 386–389. DOI: 10.1016/j.procir.2018.05.046.
  • Bouland, C.; Urlea, V.; Beaubier, K.; Samoilenko, M.; Brailovski, V. Abrasive Flow Machining of Laser Powder Bed-Fused Parts: Numerical Modeling and Experimental Validation. J. Mater. Process. Technol. 2019, 273(December 2018), 116262. DOI: 10.1016/j.jmatprotec.2019.116262.
  • Ferchow, J.; Baumgartner, H.; Klahn, C.; Meboldt, M. Model of Surface Roughness and Material Removal Using Abrasive Flow Machining of Selective Laser Melted Channels. Rapid Prototyp. J. 2020, 26(7), 1165–1176. DOI: 10.1108/RPJ-09-2019-0241.
  • Guo, J.; Song, C.; Fu, Y.; Au, K. H.; Kum, C. W.; Goh, M. H.; Ren, T.; Huang, R.; Sun, C. N. Internal Surface Quality Enhancement of Selective Laser Melted Inconel 718 by Abrasive Flow Machining. J. Manuf. Sci. Eng. Trans. ASME. 2020, 142(10), 1–13. DOI: 10.1115/1.4047141.
  • Mohammadian, N.; Turenne, S.; Brailovski, V. Surface Finish Control of Additively-Manufactured Inconel 625 Components Using Combined Chemical-Abrasive Flow Polishing. J. Mater. Process. Technol. 2018, 252, 728–738. DOI: 10.1016/j.jmatprotec.2017.10.020.
  • Haribaskar, R.; Kumar, T. S.; Tamiloli, N. Surface Integrity of Additively Manufactured Inconel-718 by Peening Approaches. Mater. Manuf. Process. 2022, 38, 1009–1019. DOI: 10.1080/10426914.2022.2146716.
  • C, U. N.; P, S. P. A. Selective Laser Melting and Post-Processing Stages for Enhancing the Material Behavior of Cobalt-Chromium Alloy in Total Hip Replacement: A Review. Mater. Manuf. Process. 2023, 38(5), 495–515. DOI: 10.1080/10426914.2022.2105879.
  • Chen, T.; Pang, S.; Tang, Q.; Suo, H.; Gong, S. Evaporation Ripped Metallurgical Pore in Electron Beam Freeform Fabrication of Ti-6-Al-4-V. Mater. Manuf. Process. 2016, 31(15), 1995–2000. DOI: 10.1080/10426914.2015.1127948.
  • Prisco, U.; Astarita, A.; El Hassanin, A.; Franchitti, S. Influence of Processing Parameters on Microstructure and Roughness of Electron Beam Melted Ti-6Al-4V Titanium Alloy. Mater. Manuf. Process. 2019, 34(15), 1753–1760. DOI: 10.1080/10426914.2019.1683576.
  • Manoj, A.; Rao, M. A.; Basha, M. M.; Basha, S. M.; Sankar, M. R. State of Art on Wire Feed Additive Manufacturing of Ti-6Al-4V Alloy. Mater. Today Proc. 2020, 26(xxxx), 2608–2615. DOI: 10.1016/j.matpr.2020.02.551.
  • Darji, R.; Badheka, V.; Mehta, K.; Joshi, J.; Yadav, A.; Chakraborty, A. K. Investigation on Stability of Weld Morphology, Microstructure of Processed Zones, and Weld Quality Assessment for Hot Wire Gas Tungsten Arc Welding of Electrolytic Tough Pitch Copper. Mater. Manuf. Process. 2022, 37(8), 908–920. DOI: 10.1080/10426914.2021.1981931.
  • Kum, C. W.; Wu, C. H.; Wan, S.; Kang, C. W. Prediction and Compensation of Material Removal for Abrasive Flow Machining of Additively Manufactured Metal Components. J. Mater. Process. Technol. 2020 March, 282, 116704. DOI: 10.1016/j.jmatprotec.2020.116704.
  • Kum, C. W.; Wu, C. H.; Wan, S. Simulation-Driven Material Removal Compensation to Achieve Dimensional Accuracy After Abrasive Flow Machining. In In Proceedings of Joint Special Interest Group Meeting between Euspen and ASPE on Advancing Precision in Additive Manufacturing; 2019; pp 2–5.
  • Han, S.; Salvatore, F.; Rech, J.; Bajolet, J. Abrasive Flow Machining (AFM) Finishing of Conformal Cooling Channels Created by Selective Laser Melting (SLM). Precis. Eng. 2020, 64(February), 20–33. DOI: 10.1016/j.precisioneng.2020.03.006.
  • Han, S.; Salvatore, F.; Rech, J.; Bajolet, J.; Courbon, J. Effect of Abrasive Flow Machining (AFM) Finish of Selective Laser Melting (SLM) Internal Channels on Fatigue Performance. J. Manuf. Process. 2020, 59(September), 248–257. DOI: 10.1016/j.jmapro.2020.09.065.
  • Shayfull, Z.; Sharif, S.; MohdZain, A.; MohdSaad, R.; Fairuz, M. A. Milled Groove Square Shape Conformal Cooling Channels in Injection Moulding Process. Mater. Manuf. Process. 2013, 130122112458009. DOI: 10.1080/10426914.2013.763968.
  • Dimla, D. E.; Camilotto, M.; Miani, F. Design and Optimisation of Conformal Cooling Channels in Injection Moulding Tools. J. Mater. Process. Technol. 2005, 164–165, 1294–1300. DOI: 10.1016/j.jmatprotec.2005.02.162.
  • Kuo, C.-C.; Hsu, H.-J. Development and Application of Hybrid Mold with Microfeatures in Micro-Hot Embossing. Mater. Manuf. Process. 2013, 28(11), 1203–1208. DOI: 10.1080/10426914.2013.832305.
  • Eiamsa-Ard, K.; Wannissorn, K. Conformal Bubbler Cooling for Molds by Metal Deposition Process. CAD Comput. Aided Des. 2015, 69, 126–133. DOI: 10.1016/j.cad.2015.04.004.
  • Han, S.; Salvatore, F.; Rech, J.; Bajolet, J.; Courbon, J. Surface Integrity in Abrasive Flow Machining (AFM) of Internal Channels Created by Selective Laser Melting (SLM) in Different Building Directions. Procedia. CIRP. 2020, 87, 315–320. DOI: 10.1016/j.procir.2020.02.022.
  • François, M.; Han, S.; Segonds, F.; Dupuy, C.; Rivette, M.; Turpault, S.; Mimouna, M.; Salvatore, F.; Rech, J.; Peyre, P. Electromagnetic Performance of Ti6Al4V and AlSi7mg0.6 Waveguides with Laser Beam Melting (LBM) Produced and Abrasive Flow Machining (AFM) Finished Internal Surfaces. J. Electromagn. Waves Appl. 2021, 35(18), 2510–2526. DOI: 10.1080/09205071.2021.1954554.
  • Jalui, S. S.; Spurgeon, T. J.; Jacobs, E. R.; Chatterjee, A.; Stecko, T.; Manogharan, G. P. Abrasive Flow Machining of Additively Manufactured Titanium: Thin Walls and Internal Channels. In Solid Freeform Fabrication 2021: Proceedings of the 32nd Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference Reviewed Paper; University of Texas at Austin, 2021; pp 1646–1660. DOI: 10.26153/tsw/17674.
  • Ni, C.; Shi, Y. Abrasive Flow Finishing of Micro-Channel Produced by Selective Laser Melting. Mater. Manuf. Process. 2023, 38(5), 1–15. DOI: 10.1080/10426914.2022.2105881.
  • Samoilenko, M.; Lanik, G.; Brailovski, V. Towards the Determination of Machining Allowances and Surface Roughness of 3d-Printed Parts Subjected to Abrasive Flow Machining. J. Manuf. Mater. Process. 2021, 5(4), 1–27. DOI: 10.3390/jmmp5040111.
  • Basha, S. M.; Venkaiah, N.; Sankar, M. R. Development and Performance Evaluation of Galactomannan Polymer Based Abrasive Medium to Finish Atomic Diffusion Additively Manufactured Pure Copper Using Abrasive Flow Finishing. Addit. Manuf. 2023, 61(August 2022), 103290. DOI: 10.1016/j.addma.2022.103290.
  • Basha, S. M.; Sankar, M. R.; Venkaiah, N. Experimental Investigation on Deballing and Surface Finishing of Selective Laser Melted 18Ni300 Steel Using Polymer Rheological Abrasive Medium. Wear. 2023, 523, 204813. DOI: 10.1016/j.wear.2023.204813.
  • Francis, N. K.; Viswanadhan, K. G.; Paulose, M. M. Swirling Abrasive Fluidized Bed Machining: Effect of Process Parameters on Machining Performance. Mater. Manuf. Process. 2015, 30(7), 852–857. DOI: 10.1080/10426914.2014.973580.
  • Barletta, M.; Santo, L.; Tagliaferri, V. Technological Application of the Fluidized Bed. In AITEM Conference; 2001; pp 659–666.
  • Nanda, B. K.; Mishra, A.; Dhupal, D. Fluidized Bed Abrasive Jet Machining (FB-AJM) of K-99 Alumina Ceramic Using SiC Abrasives. Int. J. Adv. Manuf. Technol. 2017, 90(9–12), 3655–3672. DOI: 10.1007/s00170-016-9699-5.
  • Barletta, M.; Ceccarelli, D.; Guarino, S.; Tagliaferri, V. Fluidized Bed Assisted Abrasive Jet Machining (FB-AJM): Precision Internal Finishing of Inconel 718 Components. J. Manuf. Sci. Eng. Trans. ASME. 2007, 129(6), 1045–1059. DOI: 10.1115/1.2752831.
  • Barletta, M. A New Technology in Surface Finishing: Fluidized Bed Machining (FBM) of Aluminium Alloys. J. Mater. Process. Technol. 2006, 173(2), 157–165. DOI: 10.1016/j.jmatprotec.2005.11.020.
  • Barletta, M. Progress in Abrasive Fluidized Bed Machining. J. Mater. Process. Technol. 2009, 209(20), 6087–6102. DOI: 10.1016/j.jmatprotec.2009.04.009.
  • Atzeni, E.; Barletta, M.; Calignano, F.; Iuliano, L.; Rubino, G.; Tagliaferri, V. Abrasive Fluidized Bed (AFB) Finishing of AlSi10mg Substrates Manufactured by Direct Metal Laser Sintering (DMLS). Addit. Manuf. 2016, 10, 15–23. DOI: 10.1016/j.addma.2016.01.005.
  • Atzeni, E.; Rubino, G.; Salmi, A.; Trovalusci, F. Abrasive Fluidized Bed Finishing to Improve the Fatigue Behaviour of Ti6Al4V Parts Fabricated by Electron Beam Melting. Int. J. Adv. Manuf. Technol. 2020, 110(1–2), 557–567. DOI: 10.1007/s00170-020-05814-9.
  • Barletta, M.; Tagliaferri, V.; Trovalusci, F.; Veniali, F.; Gisario, A. The Mechanisms of Material Removal in the Fluidized Bed Machining of Polyvinyl Chloride Substrates. J. Manuf. Sci. Eng. Trans. ASME. 2013, 135(1). DOI: 10.1115/1.4007956.
  • Hassanin, A. E.; Troiano, M.; Silvestri, A. T.; Contaldi, V.; Scherillo, F.; Solimene, R.; Scala, F.; Squillace, A.; Salatino, P. Fluidised Bed Machining of Metal Additive Manufactured Parts. AIP Conf. Proc. 2019, 2113, 150009. DOI:10.1063/1.5112685.
  • Hassanin, A. E.; Troiano, M.; Scherillo, F.; Silvestri, A. T.; Contaldi, V.; Solimene, R.; Scala, F.; Squillace, A.; Salatino, P. Rotation-Assisted Abrasive Fluidised Bed Machining of Alsi10mg Parts Made Through Selective Laser Melting Technology. Procedia. Manuf. 2020, 47, 1043–1049. Elsevier B.V. DOI: 10.1016/j.promfg.2020.04.113.
  • Ahmad, S.; Gangwar, S.; Yadav, P. C.; Singh, D. K. Optimization of Process Parameters Affecting Surface Roughness in Magnetic Abrasive Finishing Process. Mater. Manuf. Process. 2017, 32(15), 1723–1729. DOI: 10.1080/10426914.2017.1279307.
  • Singh, R. K.; Gangwar, S.; Singh, D. K. Experimental Investigation on Temperature-Affected Magnetic Abrasive Finishing of Aluminum 6060. Mater. Manuf. Process. 2019, 34(11), 1274–1285. DOI: 10.1080/10426914.2019.1628263.
  • Jain, V. K.; Jayswal, S. C.; Dixit, P. M. Modeling and Simulation of Surface Roughness in Magnetic Abrasive Finishing Using Non-Uniform Surface Profiles. Mater. Manuf. Process. 2007, 22(2), 256–270. DOI: 10.1080/10426910601134096.
  • Nagdeve, L.; Dhakar, K.; Kumar, H. Development of Novel Finishing Tool into Magnetic Abrasive Finishing Process of Aluminum 6061. Mater. Manuf. Process. 2020, 35(10), 1129–1134. DOI: 10.1080/10426914.2020.1767295.
  • Barman, A.; Das, M. Simulation and Experimental Investigation of Finishing Forces in Magnetic Field Assisted Finishing Process. Mater. Manuf. Process. 2018, 33(11), 1223–1232. DOI: 10.1080/10426914.2018.1453157.
  • Yamaguchi, H.; Fergani, O.; Wu, P. Y. Modification Using Magnetic Field-Assisted Finishing of the Surface Roughness and Residual Stress of Additively Manufactured Components. CIRP Ann. - Manuf. Technol. 2017, 66(1), 305–308. DOI: 10.1016/j.cirp.2017.04.084.
  • Zhang, J.; Chaudhari, A.; Wang, H. Surface Quality and Material Removal in Magnetic Abrasive Finishing of Selective Laser Melted 316L Stainless Steel. J. Manuf. Process. 2019, 45(February), 710–719. DOI: 10.1016/j.jmapro.2019.07.044.
  • Guo, J.; Au, K. H.; Sun, C. N.; Goh, M. H.; Kum, C. W.; Liu, K.; Wei, J.; Suzuki, H.; Kang, R. Novel Rotating-Vibrating Magnetic Abrasive Polishing Method for Double-Layered Internal Surface Finishing. J. Mater. Process. Technol. 2019, 264(April 2018), 422–437. DOI: 10.1016/j.jmatprotec.2018.09.024.
  • Ahmad, S.; Singari, R. M.; Mishra, R. S. Tri-Objective Constrained Optimization of Pulsating DC Sourced Magnetic Abrasive Finishing Process Parameters Using Artificial Neural Network and Genetic Algorithm. Mater. Manuf. Process. 2021, 36(7), 843–857. DOI: 10.1080/10426914.2020.1866196.
  • Mulik, R. S.; Pandey, P. M. Mechanism of Surface Finishing in Ultrasonic-Assisted Magnetic Abrasive Finishing Process. Mater. Manuf. Process. 2010, 25(12), 1418–1427. DOI: 10.1080/10426914.2010.499580.
  • Saraeian, P.; Soleimani Mehr, H.; Moradi, B.; Tavakoli, H.; Khalil Alrahmani, O. Study of Magnetic Abrasive Finishing for AISI321 Stainless Steel. Mater. Manuf. Process. 2016, 31(15), 2023–2029. DOI: 10.1080/10426914.2016.1140195.
  • Jain, V. K.; Sidpara, A.; Sankar, M. R.; Das, M. Nano-Finishing Techniques: A Review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2012, 226(2), 327–346. DOI: 10.1177/0954406211426948.
  • Singh, D. K.; Jain, V. K.; Raghuram, V. On the Performance Analysis of Flexible Magnetic Abrasive Brush. Mach. Sci. Technol. 2005, 9(4), 601–619. DOI: 10.1080/10910340500398217.
  • Pashmforoush, F.; Rahimi, A. Nano-Finishing of BK7 Optical Glass Using Magnetic Abrasive Finishing Process. Appl. Opt. 2015, 54(9), 2199. DOI: 10.1364/AO.54.002199.
  • Wu, P. Y.; Yamaguchi, H. Material Removal Mechanism of Additively Manufactured Components Finished Using Magnetic Abrasive Finishing. Procedia. Manuf. 2018, 26, 394–402. Elsevier B.V. DOI: 10.1016/j.promfg.2018.07.047.
  • Wu, P. Y.; Hirtler, M.; Bambach, M.; Yamaguchi, H. Effects of Build- and Scan-Directions on Magnetic Field-Assisted Finishing of 316L Stainless Steel Disks Produced with Selective Laser Melting. CIRP J. Manuf. Sci. Technol. 2020, 31(2019), 583–594. DOI: 10.1016/j.cirpj.2020.08.010.
  • Sun, Z.; Fan, Z.; Tian, Y.; Prakash, C.; Guo, J.; Li, L. Post-Processing of Additively Manufactured Microstructures Using Alternating-Magnetic Field-Assisted Finishing. J. Mater. Res. Technol. 2022, 19, 1922–1933. DOI: 10.1016/j.jmrt.2022.05.176.
  • Zhang, J.; Wang, H. Magnetically Driven Internal Finishing of AISI 316L Stainless Steel Tubes Generated by Laser Powder Bed Fusion. J. Manuf. Process. 2022, 76, 155–166. DOI: 10.1016/j.jmapro.2022.02.009.
  • Li, K.; Ma, R.; Zhang, M.; Chen, W.; Li, X.; Zhang, D. Z.; Tang, Q.; Murr, L. E.; Li, J.; Cao, H. Hybrid Post-Processing Effects of Magnetic Abrasive Finishing and Heat Treatment on Surface Integrity and Mechanical Properties of Additively Manufactured Inconel 718 Superalloys. J. Mater. Sci. Technol. 2022, 128, 10–21. DOI: 10.1016/j.jmst.2022.03.026.
  • Furuki, T.; Hirano, T.; Kousaka, H. Investigation on Magnetic Polishing Characteristics of Metal Additive Manufactured Ti-6Al-4V. Int. J. Abras. Technol. 2019, 9(3), 188–199. DOI: 10.1504/IJAT.2019.103480.
  • Teng, X.; Zhang, G.; Zhao, Y.; Cui, Y.; Li, L.; Jiang, L. Study on Magnetic Abrasive Finishing of AlSi10mg Alloy Prepared by Selective Laser Melting. Int. J. Adv. Manuf. Technol. 2019, 105(5–6), 2513–2521. DOI: 10.1007/s00170-019-04485-5.
  • Zhu, P.; Zhang, G.; Teng, X.; Du, J.; Jiang, L.; Chen, H.; Liu, N. Investigation and Process Optimization for Magnetic Abrasive Finishing Additive Manufacturing Samples with Different Forming Angles. Int. J. Adv. Manuf. Technol. 2022, 118(7–8), 2355–2371. DOI: 10.1007/s00170-021-08083-2.
  • Cui, Y.; Zhang, G.; Cui, T.; Zhu, P.; Du, J.; Liu, N.; Chen, H. Study on Magnetic Abrasive Finishing Process of AlSi10mg Alloy Curved Surface Formed by Selective Laser Melting. Int. J. Adv. Manuf. Technol. 2022, 118(9–10), 3315–3330. DOI: 10.1007/s00170-021-08138-4.
  • Shi, H.; Yang, S.; Li, X.; Li, W. Influence of GO on Surface Process Mechanism in Barrel Finishing. Mater. Manuf. Process. 2022, 38, 1–9.
  • Davidson, D. A. Surface Finishing Reaches New Heights: Mass Media Finishing Techniques Can Improve Aircraft Part Performance and Service Life. Met. Finish. 2005, 103(3), 25–28. DOI: 10.1016/S0026-0576(05)80491-X.
  • Hashimoto, Y.; Ito, T.; Nakayama, Y.; Furumoto, T.; Hosokawa, A. Fundamental Investigation of Gyro Finishing Experimental Investigation of Contact Force Between Cylindrical Workpiece and Abrasive Media Under Dry Condition. Precis. Eng. 2021, 67, 123–136. DOI: 10.1016/j.precisioneng.2020.09.009.
  • Shi, H.; Yang, S.; Li, X.; Li, W.; Zhang, H. Material Removal Mechanism of Aluminium Alloy in Barrel Finishing Under Grinding Fluid. Mater. Manuf. Process. 2021, 36(9), 1049–1059. DOI: 10.1080/10426914.2021.1885703.
  • Ahluwalia, K.; Mediratta, R.; Yeo, S. H. A Novel Approach to Vibratory Finishing: Double Vibro-Polishing. Mater. Manuf. Process. 2017, 32(9), 998–1003. DOI: 10.1080/10426914.2016.1232812.
  • Moleroda Finishing Systems Ltd. Drag Finishing Setup. 2020 [Accessed 16 Novemb 2020]. Available https://www.moleroda.com/wp-content/uploads/2015/12/Rosler-drag-polisher.jpg
  • Jamal, M.; Morgan, M. N. Design Process Control for Improved Surface Finish of Metal Additive Manufactured Parts of Complex Build Geometry. Inventions. 2017, 2(4), 1–18. DOI: 10.3390/inventions2040036.
  • Jamal, M.; Morgan, M. N.; Peavoy, D. A Digital Process Optimization, Process Design and Process Informatics System for High-Energy Abrasive Mass Finishing. Int. J. Adv. Manuf. Technol. 2017, 92(1–4), 303–319. DOI: 10.1007/s00170-017-0124-5.
  • Boschetto, A.; Veniali, F.; Miani, F. Mass Finishing of Parts Produced by Direct Metal Laser Sintering. In Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2004; 2004; Vol. 3, pp 329–333. DOI: 10.1115/ESDA2004-58585.
  • Boschetto, A.; Bottini, L.; Veniali, F. Surface Roughness and Radiusing of Ti6Al4V Selective Laser Melting-Manufactured Parts Conditioned by Barrel Finishing. Int. J. Adv. Manuf. Technol. 2018, 94(5–8), 2773–2790. DOI: 10.1007/s00170-017-1059-6.
  • Khan, A. U.; Patidar, M.; Petare, A. C.; Chouhan, R.; Chouhan, P.; Vishwakarma, B.; Sharma, U.; Kaushal, S.; Dhepte, D.; Madhukar, Y. K. Development of Barrel Finishing Machine to Improve Surface Finish of the Wire Arc Additive Manufactured Parts. Procedia. CIRP. 2020, 91, 330–335. Elsevier B.V. DOI: 10.1016/j.procir.2020.02.184.
  • Boschetto, A.; Bottini, L.; Macera, L.; Veniali, F. Post-Processing of Complex SLM Parts by Barrel Finishing. Appl. Sci. 2020, 10(4), 1382. DOI: 10.3390/app10041382.
  • Nalli, F.; Bottini, L.; Boschetto, A.; Cortese, L.; Veniali, F. Effect of Industrial Heat Treatment and Barrel Finishing on the Mechanical Performance of Ti6AL4V Processed by Selective Laser Melting. Appl. Sci. 2020, 10(7), 7. DOI: 10.3390/app10072280.
  • Khorasani, M.; Gibson, I.; Ghasemi, A. H.; Brandt, M.; Leary, M. On the Role of Wet Abrasive Centrifugal Barrel Finishing on Surface Enhancement and Material Removal Rate of LPBF Stainless Steel 316L. J. Manuf. Process. 2020, 59(November 2019), 523–534. DOI: 10.1016/j.jmapro.2020.09.058.
  • Salvatore, F.; Grange, F.; Kaminski, R.; Claudin, C.; Kermouche, G.; Rech, J.; Texier, A. Experimental and Numerical Study of Media Action During Tribofinishing in the Case of SLM Titanium Parts. Procedia. CIRP. 2017, 58, 451–456. DOI: 10.1016/j.procir.2017.03.251.
  • Güneşsu, E.; Yılmaz, M. S.; Taşcıoğlu, E.; Sharif, S.; Kaynak, Y. Effect of Drag Finish Post-Processing on Surface Integrity and Wear Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion Additive Manufacturing. J. Mater. Eng. Perform. 2022, 31(12), 9962–9971. DOI: 10.1007/s11665-022-07038-2.
  • Atzeni, E.; Balestrucci, A.; Catalano, A. R.; Iuliano, L.; Priarone, P. C.; Salmi, A.; Settineri, L. Performance Assessment of a Vibro-Finishing Technology for Additively Manufactured Components. Procedia. CIRP. 2020, 88, 427–432. Elsevier B.V. DOI: 10.1016/j.procir.2020.05.074.
  • Singh, R. P.; Singhal, S. Rotary Ultrasonic Machining: A Review. Mater. Manuf. Process. 2016, 31(14), 1795–1824. DOI: 10.1080/10426914.2016.1140188.
  • Rao, R. V.; Pawar, P. J.; Davim, J. P. Parameter Optimization of Ultrasonic Machining Process Using Nontraditional Optimization Algorithms. Mater. Manuf. Process. 2010, 25(10), 1120–1130. DOI: 10.1080/10426914.2010.489788.
  • Wang, J.; Zhu, J.; Liew, P. J. Material Removal in Ultrasonic Abrasive Polishing of Additive Manufactured Components. Appl. Sci. 2019, 9(24), 24. DOI: 10.3390/app9245359.
  • Tan, K. L. L.; Yeo, S. H. H. Surface Finishing on IN625 Additively Manufactured Surfaces by Combined Ultrasonic Cavitation and Abrasion. Addit. Manuf. 2020, 31(September 2019), 100938. DOI: 10.1016/j.addma.2019.100938.
  • Hock, Y. S.; Prasanth, N. A.; Liang, T. K. Experimental Investigation on the Effect of Ambient Pressure and Fluid Temperature in Ultrasonic Cavitation Erosion. 7th International Conference on Mechanics and Materials in Design, 11 - 15 june 2017, Albufeira/Portugal. 2017, 1, 1–12. https://www.researchgate.net/profile/Nagalingam-Arun-Prasanth/publication/317823245_Experimental_Investigation_on_the_Effect_of_Ambient_Pressure_and_Fluid_Temperature_in_Ultrasonic_Cavitation_Erosion/links/594ccca5aca272ea0a96100b/Experimental-Investigation-on-the-Effect-of-Ambient-Pressure-and-Fluid-Temperature-in-Ultrasonic-Cavitation-Erosion.pdf
  • Haosheng, C.; Jiadao, W.; Darong, C. Cavitation Damages on Solid Surfaces in Suspensions Containing Spherical and Irregular Microparticles. Wear. 2009, 266(1–2), 345–348. DOI: 10.1016/j.wear.2008.05.010.
  • Dular, M.; Delgosha, O. C.; Petkovšek, M. Observations of Cavitation Erosion Pit Formation. Ultrason. Sonochem. 2013, 20(4), 1113–1120. DOI: 10.1016/j.ultsonch.2013.01.011.
  • Hadi, M. Influence of Proportion of Abrasive Particles in Conveyor Liquid on Ultrasonic Cavitation Machining Process. In Proceedings of the World Congress on Engineering 2011, WCE 2011, 6 - 8 July 2011, London, U.K., 2011; Vol. 3, pp 2594–2598. https://www.iaeng.org/publication/WCE2011/WCE2011_pp2594-2598.pdf.
  • Tan, W. L.; Vohra, M. S.; Yeo, S. H. Depth and Horizontal Distance of Surface Roughness Improvement on Vertical Surface of 3D-Printed Material Using Ultrasonic Cavitation Machining Process with Abrasive Particles. Key Eng. Mater. 2017, 748, 264–268. DOI: 10.4028/www.scientific.net/KEM.748.264.
  • Tan, K. L.; Yeo, S. H. Surface Modification of Additive Manufactured Components by Ultrasonic Cavitation Abrasive Finishing. Wear. 2017, 378–379, 90–95. DOI: 10.1016/j.wear.2017.02.030.
  • Hadi, M. A New Non-Traditional Machining Method Using Cavitation Process. In Proceedings of the World Congress on Engineering 2011, WCE 2011, 6 - 8 July 2011, London, U.K., 2011; Vol. 3, pp 2154–2158. https://www.iaeng.org/publication/WCE2011/WCE2011_pp2154-2158.pdf.
  • Nagalingam, A. P.; Yeo, S. H. Controlled Hydrodynamic Cavitation Erosion with Abrasive Particles for Internal Surface Modification of Additive Manufactured Components. Wear. 2018, 414–415(August), 89–100. DOI: 10.1016/j.wear.2018.08.006.
  • Nagalingam, A. P.; Yuvaraj, H. K.; Yeo, S. H. Synergistic Effects in Hydrodynamic Cavitation Abrasive Finishing for Internal Surface-Finish Enhancement of Additive-Manufactured Components. Addit. Manuf. 2020, 33, 101110. DOI: 10.1016/j.addma.2020.101110.
  • Nagalingam, A. P.; Yeo, S. H. Effects of Combined Wear Mechanisms in Internal Surface Finishing Using Controlled Hydrodynamic Cavitation Abrasive Finishing Process. Lect. Notes Mech. Eng. 2020, 2, 244–253.
  • Nagalingam, A. P.; Thiruchelvam, V. C.; Yeo, S. H. A Novel Hydrodynamic Cavitation Abrasive Technique for Internal Surface Finishing. J. Manuf. Process. 2019, 46(February), 44–58. DOI: 10.1016/j.jmapro.2019.08.014.
  • Nagalingam, A. P.; Chinnaiyan Thiruchelvam, V.; Yuvaraj, H. K.; Yeo, Z. C.; Toh, D. W.; Yeo, S. H. Effect of Internal Surface Finishing Using Hydrodynamic Cavitation Abrasive Finishing (HCAF) Process on the Mechanical Properties of Additively Manufactured Components. Laser Metrol. Mach. Perform. XIII - 13th Int. Conf. Exhib. Laser Metrol. Mach. Tool, C. Robot. Performance, LAMDAMAP. 2019, 2019, 122–131.
  • Nagalingam, A. P.; Yuvaraj, H. K.; Santhanam, V.; Yeo, S. H. Multiphase Hydrodynamic Flow Finishing for Surface Integrity Enhancement of Additive Manufactured Internal Channels. J. Mater. Process. Technol. 2020, 283, 116692. DOI: 10.1016/j.jmatprotec.2020.116692.
  • Nagalingam, A. P.; Yeo, S. H. Surface Finishing of Additively Manufactured Inconel 625 Complex Internal Channels: A Case Study Using a Multi-Jet Hydrodynamic Approach. Addit. Manuf. 2020, 36(June), 101428. DOI: 10.1016/j.addma.2020.101428.
  • Morton, W.; Green, S.; Rennie, A. E. W.; Abram, T. N. Surface Finishing Techniques for SLM Manufactured Stainless Steel 316L Components. In Innovative Developments in Virtual and Physical Prototyping - Proceedings of the 5th International Conference on Advanced Research and Rapid Prototyping, 28/09/2011 → 1/10/2011, Leiria, Portugal; CRC PRESS-TAYLOR & FRANCIS GROUP, 2011; pp 503–509.
  • Lesyk, D.; , Martinez, S.; , Mordyuk, B.; , Dzhemelinskyi, V.; , and Lamikiz, A. Surface Finishing of Complexly Shaped Parts Fabricated by Selective Laser Melting. Advanced Manufacturing Processes. Lect. Notes Mech. Eng; Springer, Cham, 2020; 186–195. DOI: 10.1007/978-3-030-40724-7_19.
  • Sagbas, B. Post-Processing Effects on Surface Properties of Direct Metal Laser Sintered AlSi10mg Parts. Met. Mater. Int. 2020, 26(1), 143–153. DOI: 10.1007/s12540-019-00375-3.
  • Kaynak, Y.; Tascioglu, E. Post-Processing Effects on the Surface Characteristics of Inconel 718 Alloy Fabricated by Selective Laser Melting Additive Manufacturing. Prog. Addit. Manuf. 2020, 5(2), 221–234. DOI: 10.1007/s40964-019-00099-1.
  • Lesyk, D. A.; Martinez, S.; Mordyuk, B. N.; Dzhemelinskyi, V. V.; Lamikiz, P.; I, G. Post-Processing of the Inconel 718 Alloy Parts Fabricated by Selective Laser Melting: Effects of Mechanical Surface Treatments on Surface Topography, Porosity, Hardness and Residual Stress. Surf. Coatings Technol. 2020, 381, 125136. DOI: 10.1016/j.surfcoat.2019.125136.
  • Hajnys, J.; Pagac, M.; Petru, J.; Stefek, P.; Mesicek, J.; Kratochvil, J. Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method. Int. J. Struct. Constr. Eng. 2020, 14(1), 46–51.
  • Kaynak, Y.; Kitay, O. The Effect of Post-Processing Operations on Surface Characteristics of 316L Stainless Steel Produced by Selective Laser Melting. Addit. Manuf. 2019, 26, 84–93. DOI: 10.1016/j.addma.2018.12.021.
  • Bai, Y.; Shi, Z.; Lee, Y. J.; Wang, H. Optical Surface Generation on Additively Manufactured AlSimg0.75 Alloys with Ultrasonic Vibration-Assisted Machining. J. Mater. Process. Technol. 2020, 280(September 2019), 116597. DOI: 10.1016/j.jmatprotec.2020.116597.
  • Greitemeier, D.; Palm, F.; Syassen, F.; Melz, T. Fatigue Performance of Additive Manufactured TiAl6v4 Using Electron and Laser Beam Melting. Int. J. Fatigue. 2017, 94, 211–217. DOI: 10.1016/j.ijfatigue.2016.05.001.
  • Galati, M.; Minetola, P.; Rizza, G. Surface Roughness Characterisation and Analysis of the Electron BAeam Melting (EBM) Process. Mater. (Basel). 2019, 12(13), 2211. DOI: 10.3390/ma12132211.
  • Sanz, C.; García Navas, V. Structural Integrity of Direct Metal Laser Sintered Parts Subjected to Thermal and Finishing Treatments. J. Mater. Process. Technol. 2013, 213(12), 2126–2136. DOI: 10.1016/j.jmatprotec.2013.06.013.
  • Hamidi Nasab, M.; Falzetti, A.; Redaelli, A.; Lecis, N.; Giussani, A.; Sala, L.; Vedani, M. Finishing of Internal and External Surfaces Produced by Powder Bed Fusion. SIG Addit. Manuf. 2017 October, 1–4.
  • Benedetti, M.; Torresani, E.; Leoni, M.; Fontanari, V.; Bandini, M.; Pederzolli, C.; Potrich, C. The Effect of Post-Sintering Treatments on the Fatigue and Biological Behavior of Ti-6Al-4V ELI Parts Made by Selective Laser Melting. J. Mech. Behav. Biomed. Mater. 2017 March, 71, 295–306. DOI: 10.1016/j.jmbbm.2017.03.024.
  • Iquebal, A. S.; Amri, S. E.; Shrestha, S.; Wang, Z.; Manogharan, G. P.; Bukkapatnam, S. Longitudinal Milling and Fine Abrasive Finishing Operations to Improve Surface Integrity of Metal AM Components. Procedia. Manuf. 2017, 10, 990–996. DOI: 10.1016/j.promfg.2017.07.090.
  • Jian, Y.; Shi, Y.; Liu, J.; Huang, C.; Guo, Z. Surface Roughness Analysis of 3D Printed Microchannels and Processing Characteristics of Abrasive Flow Finishing. Arab. J. Sci. Eng. 2021, 47, 801–812. DOI: 10.1007/s13369-020-05260-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.