230
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Arc and molten pool behavior on quality of hybrid cold metal transfer and tandem pulsed narrow gap gas metal arc welds: a study

, , , & ORCID Icon
Pages 857-869 | Received 09 Aug 2023, Accepted 05 Oct 2023, Published online: 18 Dec 2023

References

  • Agrawal, B. P.; Ghosh, P. K. Thermal Modeling of Multipass Narrow Gap Pulse Current GMA Welding by Single Seam per Layer Deposition Technique. Mater. Manuf. Process. 2010, 25(11), 1251–1268. doi: 10.1080/10426914.2010.489593
  • Polamuri, S. K.; Nasina, V.; Biswajyoti, B.; Deshmuk, V.; Degala, V. K. Study on the Arc Behavior and Mechanical Properties of Energy-Efficient Hybrid CMT- Pulsed Gas Metal Arc Narrow Gap Mild Steel Welds. Int. J. Adv. Manuf. Technol., 1–29. Published online 2023. doi: 10.1007/s00170-023-12350-9
  • Shukla, P.; Chitral, S.; Kumar, T.; Kiran, D. V. The Influence of GMAW Correction Parameters on Stabilizing the Deposition Characteristics for Wire Arc Additive Manufacturing. J. Manuf. Process. 2023, 90(September 2022), 54–68. doi: 10.1016/j.jmapro.2023.01.075
  • Shukla, P.; Dash, B.; Kiran, D. V.; Bukkapatnam, S. Arc Behavior in Wire Arc Additive Manufacturing Process. Procedia Manuf. 2020, 48(2019), 725–729. doi: 10.1016/j.promfg.2020.05.105
  • Kumar, T.; Kiran, D. V.; Arora, N.; Kumar, P. S. Study of Steel-Aluminium Joining Under the Influence of Current Waveforms Using Advanced CMT Process Variants. Mater. Manuf. Process. 2022, 37(13), 1578–1595. Published online 2022:10426914. doi: 10.1080/10426914.2022.2030879
  • Chakraborty, D.; Tirumala, T.; Chitral, S.; Sahoo, B. N.; Kiran, D. V.; Kumar, P. A. The State of the Art for Wire Arc Additive Manufacturing Process of Titanium Alloys for Aerospace Applications. J. Mater. Eng. Perform. 2022, 31(8), 6149–6182. doi: 10.1007/s11665-022-07128-1
  • Sandeep, O. S.; Kuriachen, B. Influence of Build Direction and Heat Treatment on the Microstructure and Tensile Characteristics of Cold Metal Transfer Based Wire Arc Additive Manufactured SS 304L. CIRP J. Manuf. Sci. Technol. 2023, 47, 59–70. doi: 10.1016/j.cirpj.2023.08.013
  • Agrawal, B. P.; Ghosh, P. K. Characteristics of Extra Narrow Gap Weld of HSLA Steel Welded by Single-Seam per Layer Pulse Current GMA Weld Deposition. J. Mater. Eng. Perform. 2017, 26(3), 1365–1381. doi: 10.1007/s11665-017-2516-y
  • Anant, R.; Ghosh, P. K. Ultra-Narrow Gap Welding of Thick Section of Austenitic Stainless Steel to HSLA Steel. J. Mater. Process. Technol. 2017, 239, 210–221. doi: 10.1016/j.jmatprotec.2016.08.016
  • Krampit, A. G.; Krampit, N. Y.; Krampit, M. A. Effect of the Parameters of Pulsed Arc Welding on the Formation of a Root Layer in a Narrow Gap. Weld. Int. 2014, 28(8), 629–630. doi: 10.1080/09507116.2013.849393
  • Zhang, G.; Shi, Y.; Zhu, M.; Fan, D. Arc Characteristics and Metal Transfer Behavior in Narrow Gap Gas Metal Arc Welding Process. J. Mater. Process. Technol. 2017, 245, 15–23. doi: 10.1016/j.jmatprotec.2017.02.006
  • Cai, X. Y.; Fan, C. L.; Lin, S. B.; Yang, C. L.; Bai, J. Y. Molten Pool Behaviors and Weld Forming Characteristics of All-Position Tandem Narrow Gap GMAW. Int. J. Adv. Manuf. Technol. 2016, 87(5–8), 2437–2444. doi: 10.1007/s00170-016-8644-y
  • Larkin, N.; Pan, Z.; Van Duin, S.; Callaghan, M.; Li, H.; Norrish, J. Tandem Gas Metal Arc Welding for Low Distortion Butt Welds. Adv. Mater. Res. 2011, 337, 511–516. doi: 10.4028/www.scientific.net/AMR.337.511
  • Ueyama, T.; Ohnawa, T.; Tanaka, M.; Nakata, K. Effects of Torch Configuration and Welding Current on Weld Bead Formation in High Speed Tandem Pulsed Gas Metal Arc Welding of Steel Sheets. Sci. Technol. Weld. Join. 2005, 10(6), 750–759. doi: 10.1179/174329305X68750
  • Ueyama, T.; Ohnawa, T.; Tanaka, M.; Nakata, K. Occurrence of Arc Interaction in Tandem Pulsed Gas Metal Arc Welding. Sci. Technol. Weld. Join. 2007, 12(6), 523–529. doi: 10.1179/174329307X173715
  • Kam, D. H.; Lee, T. H.; Kim, D. Y.; Kim, J.; Kang, M. Weld Quality Improvement and Porosity Reduction Mechanism of Zinc Coated Steel Using Tandem Gas Metal Arc Welding (GMAW). J. Mater. Process. Technol. 2021, 294(March), 117127. doi: 10.1016/j.jmatprotec.2021.117127
  • Schnick, M.; Wilhelm, G.; Lohse, M.; Füssel, U.; Murphy, A. B. Three-Dimensional Modelling of Arc Behaviour and Gas Shield Quality in Tandem Gas–Metal Arc Welding Using Anti-Phase Pulse Synchronization. J. Phys D: Appl Phys. 2011, 44(18), 185205. doi: 10.1088/0022-3727/44/18/185205
  • Scalet Rossini, L. F.; Valenzuela Reyes, R. A.; Spinelli, J. E. Double-Wire Tandem GMAW Welding Process of HSLA50 Steel. J. Manuf. Process. 2019, 45(January), 227–233. doi: 10.1016/j.jmapro.2019.07.004
  • Kang, S.; Kang, M.; Jang, Y. H.; Kim, C. Droplet Transfer and Spatter Generation in DC–AC Pulse Tandem Gas Metal Arc Welding. Sci. Technol. Weld. Join. 2020, 25(7), 589–599. Published online 2020. doi: 10.1080/13621718.2020.1786262
  • Groetelaars, P. J.; de Morais, C. O.; Scotti, A. Influence of the Arc Length on Metal Transfer in the Single Potential Double-Wire MIG/MAG Process. Weld. Int. 2009, 23(2), 112–119. doi: 10.1080/09507110802349643
  • Liu, G.; Tang, X.; Han, S.; Lu, F.; Cui, H. Influence of Interwire Angle on Undercutting Formation and Arc Behavior in Pulsed Tandem Narrow-Gap GMAW. Mater. Des. 2020, 193, 108795. doi: 10.1016/j.matdes.2020.108795
  • Liu, G.; Tang, X.; Han, S.; Cui, H. Influence of Interwire Distance and Arc Length on Welding Process and Defect Formation Mechanism in Double-Wire Pulsed Narrow-Gap Gas Metal Arc Welding. J. Mater. Eng. Perform. 2021, 30(10), 7622–7635. doi: 10.1007/s11665-021-05888-w
  • ASTM E384. Standard Test Method for Microindentation Hardness of Materials ASTM E384. ASTM Stand. 2002, 14, 1–24.
  • ASTM E8. ASTM E8/E8M Standard Test Methods for Tension Testing of Metallic Materials 1. Annu. B. ASTM Stand. 2010, 4(C), 1–27. doi: 10.1520/E0008
  • American, A.; Standard, N. Norma E23-07a - Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. Am. Soc. Test Mater. Handb. 2015, 14(C), 28. doi: 10.1520/E0023-07AE01.2
  • Evans, G. M. Effect of heat input on the microstructure and properties of C-Mn all-weld-metal deposits. Weld. J. 1982, 61(4), 125–132.
  • Devillers, L.; Kaplan, D.; Testard, P. Predicting the Microstructures and Toughness of Weld HAZs. Weld. Int. 1995, 9(2), 128–138. doi: 10.1080/09507119509548767
  • Kim, B. C.; Lee, S.; Kim, N. J.; Lee, D. Y. Microstructure and Local Brittle Zone Phenomena in High-Strength Low-Alloy Steel Welds. Metall. Trans. A. 1991, 22(1), 139–149. doi: 10.1007/BF03350956

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.