383
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Influence of Cu/Ni interlayers on rotary friction welded dissimilar SS321–Ti6Al4V joints

, , & ORCID Icon
Pages 610-619 | Received 26 Oct 2023, Accepted 17 Nov 2023, Published online: 18 Dec 2023

References

  • Reyes, L. A.; Garza, C.; Delgado, M.; Guerra-Fuentes, L.; López, L.; Zapata, O.; Cabriales, R. Cellular Automata Modeling for Rotary Friction Welding of Inconel 718. Mater. Manuf. Processes. 2022, 37(8), 877–885. DOI: 10.1080/10426914.2021.2001514.
  • Shashikala, A.; Muniraju, M.; Pakkirappa, H. Experimental Investigation of Rotary Friction Welding on the Mechanical Properties of NiTinol Alloy. Weld. Int. 2023, 37(4), 163–173. DOI: 10.1080/09507116.2023.2202343.
  • Li, X.; Li, J.; Liao, Z.; Jin, F.; Zhang, F.; Xiong, J. Microstructure Evolution and Mechanical Properties of Rotary Friction Welded TC4/SUS321 Joints at Various Rotation Speeds. Mater. Des. 2016, 99, 26–36. DOI: 10.1016/j.matdes.2016.03.037.
  • Li, P.; Dong, H.; Xia, Y.; Hao, X.; Wang, S.; Pan, L.; Zhou, J. Inhomogeneous Interface Structure and Mechanical Properties of Rotary Friction Welded TC4 Titanium Alloy/316L Stainless Steel Joints. J. Manuf. Processes. 2018, 33, 54–63. DOI: 10.1016/j.jmapro.2018.05.001.
  • Callegari, B.; Oliveira, J. P.; Aristizabal, K.; Coelho, R. S.; Brito, P. P.; Wu, L.; Schell, N.; Soldera, F. A.; Mücklich, F.; Pinto, H. C. In-Situ Synchrotron Radiation Study of the Aging Response of Ti-6Al-4V Alloy with Different Starting Microstructures. Mater. Charact. 2020, 165, 110400. DOI: 10.1016/j.matchar.2020.110400.
  • Callegari, B.; Oliveira, J. P.; Coelho, R. S.; Brito, P. P.; Schell, N.; Soldera, F. A.; Mücklich, F.; Sadik, M. I.; García, J. L.; Pinto, H. C. New Insights into the Microstructural Evolution of Ti-5Al-5Mo-5V-3Cr Alloy During Hot Working. Mater. Charact. 2020, 162, 110180. DOI: 10.1016/j.matchar.2020.110180.
  • Liu, K.; Li, Y.; Wang, J. Improving the Interfacial Microstructure Evolution of Ti/Stainless Steel GTA Welding Joint by Employing Cu Filler Metal. Mater. Manuf. Processes. 2016, 31(16), 2165–2173. DOI: 10.1080/10426914.2016.1151042.
  • Hao, X.; Wei, X.; Li, S.; Cui, Z.; Wang, W.; Dong, H.; Li, W. Joining Mechanism Evolution of Fusion Welded TC4 Titanium Alloy/304 Stainless Steel Dissimilar Joint by GTAW. Sci. Technol. Weld. Joining. 2023, 28(9), 1031–1040. DOI: 10.1080/13621718.2023.2264572.
  • Ghosh, S. K.; Chatterjee, S. On the Direct Diffusion Bonding of Titanium Alloy to Stainless Steel. Mater. Manuf. Processes. 2010, 25(11), 1317–1323. DOI: 10.1080/10426914.2010.520793.
  • a, T. J.; Zhong, B.; Li, W.-Y.; Zhang, Y.; Yang, S. Q.; Yang, C. L. On Microstructure and Mechanical Properties of Linear Friction Welded Dissimilar Ti–6Al–4V and Ti–6·5al–3·5mo–1·5zr–0·3si Joint. Sci. Technol. Weld. Joining. 2012, 17(1), 9–12. DOI: 10.1179/1362171811Y.0000000067.
  • Salvador, C. A. F.; Maia, E. L.; Costa, F. H.; Escobar, J. D.; Oliveira, J. P. A Compilation of Experimental Data on the Mechanical Properties and Microstructural Features of Ti-Alloys. Sci Data. 2022, 9(1), 188. DOI: 10.1038/s41597-022-01283-9.
  • Prasanthi, T. N.; Sudha, C.; Saroja, S. An Overview on the Microstructure and Properties of Fe/Ti Based Dissimilar Joints. Mater. Sci. Technol. 2023, 39(17), 2595–2615. DOI: 10.1080/02670836.2023.2229604.
  • Kundu, S.; Chatterjee, S. Characterization of Diffusion Bonded Joint Between Titanium and 304 Stainless Steel Using a Ni Interlayer. Mater. Charact. 2008, 59(5), 631–637. DOI: 10.1016/j.matchar.2007.05.015.
  • Muralimohan, C. H.; Ashfaq, M.; Ashiri, R.; Muthupandi, V.; Sivaprasad, K. Analysis and Characterization of the Role of Ni Interlayer in the Friction Welding of Titanium and 304 Austenitic Stainless Steel. Metall. Mater. Trans A. 2016, 47(1), 347–359. DOI: 10.1007/s11661-015-3210-z.
  • Deng, Y. Q.; Sheng, G. M.; Huang, Z. H.; Fan, L. Z. Microstructure and Mechanical Properties of Diffusion Bonded Titanium/304 Stainless Steel Joint with Pure Ag Interlayer. Sci. Technol. Weld. Joining. 2013, 18(2), 143–146. DOI: 10.1179/1362171812Y.0000000083.
  • Li, J. L.; Huo, L. P.; Zhang, F. S.; Xiong, J. T.; Li, W. Y. Fracture Characteristics of Vacuum Diffusion Bonded TA2 Titanium to 1Cr18Ni9Ti Stainless Steel Joint with Nb+ni Interlayers. Mater. Scie. Forum. 2009, 620–622, 399–402. DOI: 10.4028/www.scientific.net/MSF.620-622.399.
  • Jordan, L.; Swanger, W. H. The Properties of Pure Nickel. BUR. STAN. J. RES. 1930, 5(6), 1291. DOI: 10.6028/jres.005.075.
  • Çavuşoğlu, N. Effect of Friction Welding Parameters on the Mechanical and Microstructural Properties of Dissimilar IN713C-AISI 4140 Joints. J. Mater. Eng. Perform. 2022, 31(5), 4035–4048. DOI: 10.1007/s11665-021-06474-w.
  • Boyun, H.; Chenggong, L.; Likai, S. Chin. Mater. Eng. Dictionary. Chemical Industry Press: Beijing, 2006; Vol. 5.
  • Jirandehi, A. P.; Mehdizadeh, M.; Khonsari, M. M. Temperature-Induced Buckling of Ductile Metals During Cyclic Loading and the Subsequent Early Fracture. Int. J. Mech. Sci. 2020, 176, 105525. DOI: 10.1016/j.ijmecsci.2020.105525.
  • Zhou, K.; Wei, B. Determination of the Thermophysical Properties of Liquid and Solid Ti–6Al–4V Alloy. Appl. Phys. A. 2016, 122(3), 248. DOI: 10.1007/s00339-016-9783-6.
  • Mishra, R. S.; Ma, Z. Y. Friction Stir Welding and Processing. Materials Science and Engineering: R: Reports. Mater. Sci. Eng. R Rep. 2005, 50(1), 1–78. DOI: 10.1016/j.mser.2005.07.001.
  • Mishra, N. K.; Shrivastava, A. Improvement in Strength and Ductility of Rotary Friction Welded Inconel 600 and Stainless Steel 316L with Cu Interlayer. CIRP J. Manuf. Sci. Technol. 2023, 41, 19–29. DOI: 10.1016/j.cirpj.2022.12.006.
  • Gotawala, N.; Shrivastava, A. Microstructural Analysis and Mechanical Behavior of SS 304 and Titanium Joint from Friction Stir Butt Welding. Mater. Sci. Eng. A. 2020, 789, 139658. DOI: 10.1016/j.msea.2020.139658.
  • Neumann, G.; Tuijn, C. Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data. London, UK: Elsevier , 2009; Vol. 14.
  • Foul, A.; Aranas, C.; Guo, B.; Jonas, J. J. Dynamic Transformation of α → β Titanium at Temperatures Below the β-Transus in Commercially Pure Titanium. Mater. Sci. Eng. A. 2018, 722, 156–159. DOI: 10.1016/j.msea.2018.02.097.
  • Wang, S.; Wang, K.; Chen, G.; Li, Z.; Qin, Z.; Lu, X.; Li, C. Thermodynamic Modeling of Ti-Fe-Cr Ternary System. Calphad. 2017, 56, 160–168. DOI: 10.1016/j.calphad.2016.12.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.