173
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative analysis and experimental exploration of the milling process in the machining of Inconel 825 material under MQL

, , &
Pages 1213-1223 | Received 09 Nov 2023, Accepted 23 Jan 2024, Published online: 08 Feb 2024

References

  • Ezugwu, E. O.; Wang, Z. M.; Machado, R. The Machinability of Nickel-Based Alloys: A Review. J. Mater. Process. Technol. 1998, 86(1–3), 1–16. DOI: 10.1016/S0924-0136(98)00314-8.
  • Masmiati, N.; Sarhan, A. A. D.; Hassan, M. A. N.; Hamdi, M. Optimization of Cutting Conditions for Minimum Residual Stress, Cutting Force and Surface Roughness in End Milling of S50C Medium Carbon Steel. Meas. J. Int. Meas. Confed. 2016, 86, 253–265. DOI: 10.1016/j.measurement.2016.02.049.
  • Mia, M. Mathematical Modeling and Optimization of MQL Assisted End Milling Characteristics Based on RSM and Taguchi Method. Meas. J. Int. Meas. Confed. 2018, 121(February), 249–260. DOI: 10.1016/j.measurement.2018.02.017.
  • Zhang, S.; Li, J. F.; Wang, Y. W. Tool Life and Cutting Forces in End Milling Inconel 718 Under Dry and Minimum Quantity Cooling Lubrication Cutting Conditions. J. Clean. Prod. 2012, 32, 81–87. DOI: 10.1016/j.jclepro.2012.03.014.
  • Li, M.; Yu, T.; Yang, L.; Li, H.; Zhang, R.; Wang, W. Parameter Optimization During Minimum Quantity Lubrication Milling of TC4 Alloy with Graphene-Dispersed Vegetable-Oil-Based Cutting Fluid. J. Clean. Prod. 2019, 209, 1508–1522. DOI: 10.1016/j.jclepro.2018.11.147.
  • Prisco, U.; Astarita, A. Prediction of Specific Energy Consumption During Face Milling of Steel. Mater. Manuf. Process. 2023, 1–9. DOI: 10.1080/10426914.2023.2254370.
  • Gowthaman, S.; Jagadeesha, T. Experimental Investigation on Friction Formation During Slot Milling of Nimonic263. Mater. Manuf. Process. 2021, 36(12), 1403–1413. DOI: 10.1080/10426914.2021.1906899.
  • Deshpande, Y. V.; Binani, S.; Singh, A.; Mohatkar, M.; Chatpalliwar, A. S.; Barve, P. S. Enhancing the Machinability of Inconel 625 Milling Using Cryogen and Blend of Biodegradable Oils and Application of Advanced Algorithms. J. Brazilian Soc. Mech. Sci. Eng. 2023, 45(11), 587. DOI: 10.1007/s40430-023-04509-y.
  • Yurtkuran, H.; Boy, M.; Günay, M. Investigation of Machinability Indicators During Sustainable Milling of 17-4PH Stainless Steel Under Dry and MQL Environments. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2023, 09544089231189640. DOI: 10.1177/09544089231189640.
  • Duc, T. M.; Tuan, N. M.; Long, T. T.; Ngoc, T. B. Machining Feasibility and Sustainability Study Associated with Air Pressure, Air Flow Rate, and Nanoparticle Concentration in Nanofluid Minimum Quantity Lubrication-Assisted Hard Milling Process of 60Si2Mn Steel. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236(23), 11256–11269. DOI: 10.1177/09544062221111253.
  • Pan, J.; Feng, K.; He, L.; Zhuang, K.; Ni, J.; Lv, J.; Castaño, V. M. Influence of Different Textures on Machining Performance of a Milling Tool. Adv. Mater. Sci. Eng. 2020, 2020, 1–11. DOI: 10.1155/2020/1724241.
  • Patil, A. S.; Sunnapwar, V. K.; Bhole, K. S.; Ray, M. P.; More, Y. S. Effective Cooling Methods for Ti6Al4V CNC Milling: A Review. Adv. Mater. Process. Technol. 2023, 9(2), 457–506. DOI: 10.1080/2374068X.2022.2094073.
  • Anburaj, R.; Pradeep Kumar, M. Experimental Studies on Cryogenic CO2 Face Milling of Inconel 625 Superalloy. Mater. Manuf. Process. 2021, 36(7), 814–826. DOI: 10.1080/10426914.2020.1866199.
  • Jebaraj, M.; Pradeep Kumar, M.; Anburaj, R. Investigations on Milling SKT4 Steel by Using Cryogenic Carbon-Dioxide. Mater. Manuf. Process. 2021, 36(12), 1414–1420. DOI: 10.1080/10426914.2021.1914847.
  • Najiha, M. S.; Rahman, M. M.; Kadirgama, K. Performance of Water-Based TiO2 Nanofluid During the Minimum Quantity Lubrication Machining of Aluminium Alloy, AA6061-T6. J. Clean. Prod. 2016, 135, 1623–1636. DOI: 10.1016/j.jclepro.2015.12.015.
  • Yin, Q.; Li, C.; Zhang, Y.; Yang, M.; Jia, D.; Hou, Y.; Li, R.; Dong, L. Spectral Analysis and Power Spectral Density Evaluation in Al2O3nanofluid Minimum Quantity Lubrication Milling of 45 Steel. Int. J. Adv. Manuf. Technol. 2018, 97(1–4), 129–145. DOI: 10.1007/s00170-018-1942-9.
  • Tamang, S. K.; Chandrasekaran, M.; Sahoo, A. K. Sustainable Machining: An Experimental Investigation and Optimization of Machining Inconel 825 with Dry and MQL Approach. J. Brazilian Soc. Mech. Sci. Eng. 2018, 40(8), 1–18. DOI: 10.1007/s40430-018-1294-2.
  • Rajyalakshmi, G.; Ramaiah, P. V. Multiple Process Parameter Optimization of Wire Electrical Discharge Machining on Inconel 825 Using Taguchi Grey Relational Analysis. Int. J. Adv. Manuf. Technol. 2013, 69(5–8), 1249–1262. DOI: 10.1007/s00170-013-5081-z.
  • Kumar, R.; Saurav, A.; Bibhuti, D.; Biswal, B. Machining Performance Optimization for Electro ‑ Discharge Machining of Inconel 601, 625, 718 and 825: An Integrated Optimization Route Combining Satisfaction Function, Fuzzy Inference System and Taguchi Approach. J. Brazilian Soc. Mech. Sci. Eng. 2017, 39(9), 3499–3527. DOI: 10.1007/s40430-016-0659-7.
  • Datta, S.; Bhusan, B.; Sankar, S. Electrical Discharge Machining of Inconel 825 Using Cryogenically Treated Copper Electrode: Emphasis on Surface Integrity and Metallurgical Characteristics. J. Manuf. Process. 2017, 26, 188–202. DOI: 10.1016/j.jmapro.2017.02.020.
  • Vijay Kumar Sharma Talvinder Singh, K. S. M. R. A. G.; Verma, R. Influence of Hybrid Nanofluid on Tool Wear and Surface Roughness in MQL-Assisted Face Milling of AISI 52100. Adv. Mater. Process. Technol. 2023, 1–12. DOI: 10.1080/2374068X.2023.2179291.
  • Talvinder Singh Vijay Kumar Sharma, M. R. A. S. R. D.; Dixit, A. K. Modeling and Optimization of Cutting Process Parameters in Face Milling of EN 31 Alloy Steel Using Nanoparticle Fluids. Adv. Mater. Process. Technol. 2023, 1–13. DOI: 10.1080/2374068X.2023.2196648.
  • Tuhin Kar, A. G.; Mandal, N. K. Multi-Response Optimization of CNC Milling Parameters for Improving Performance Characteristics Using RSM and MOGA. Adv. Mater. Process. Technol. 2023, 1–15. DOI: 10.1080/2374068X.2023.2208022.
  • Ranjan Kumar Ghadai, S. C.; Kalita, K. On Solving Parametric Optimization Problem of an End Milling Process for Machining of Al 1070 Using MCDM Techniques: A Comparative Analysis. Adv. Mater. Process. Technol. 2023, 1–23. DOI: 10.1080/2374068X.2023.2216398.
  • Kamel Bousnina, A. H.; Yahia, N. B. A Combination of PSO-ANN Hybrid Algorithm and Genetic Algorithm to Optimize Technological Parameters During Milling 2017A Alloy. J. Ind. Prod. Eng. 2023, 40(7), 554–571. DOI: 10.1080/21681015.2023.2243312.
  • Kamel Bousnina, A. H.; Yahia, N. B. An Energy Survey to Optimize the Technological Parameters During the Milling of AISI 304L Steel Using the RSM, ANN and Genetic Algorithm. Adv. Mater. Process. Technol. 2023, 1–19. DOI: 10.1080/2374068X.2023.2253658.
  • Mitra, K.; Miriyala, S. S.; Pantula, P. K. Enabler to Build Smart Surrogates for Online Optimization and Knowledge Discovery. Mater. Manuf. Processes. 2017, 32(10), 1162–1171.
  • Inapakurthi, R. K.; Mitra, K. Optimal Surrogate Building Using SVR for an Industrial Grinding Process. Mater. Manuf. Process. 2022, 37(15), 1701–1707. DOI: 10.1080/10426914.2022.2039699.
  • Tadepalli, A.; Pujari, K. N.; Mitra, K. A Crystallization Case Study Toward Optimization of Expensive to Evaluate Mathematical Models Using Bayesian Approach. Mater. Manuf. Process. 2023, 38(16), 2127–2134. DOI: 10.1080/10426914.2023.2238051.
  • Sharma, S.; Pantula, P. D.; Miriyala, S. S.; Mitra, K. A Novel Data-Driven Sampling Strategy for Optimizing Industrial Grinding Operation Under Uncertainty Using Chance Constrained Programming. Powder Technol. 2021, 377, 913–923. DOI: 10.1016/j.powtec.2020.09.024.
  • Sivaiah, P.; Ajay Kumar, G. V.; Lakshmi Narasimhamu, K.; Siva Balaji, N. Performance Improvement of Turning Operation During Processing of AISI 304 with Novel Textured Tools Under Minimum Quantity Lubrication Using Hybrid Optimization Technique. Mater. Manuf. Process. 2021, 37(6), 693–700. DOI: 10.1080/10426914.2021.1967977.
  • Sivaiah, P.; Chakradhar, D. Analysis and Modeling of Cryogenic Turning Operation Using Response Surface Methodology. Silicon. 2018, 10(6), 2751–2768. DOI: 10.1007/s12633-018-9816-1.
  • Binali, R.; Demirpolat, H.; Kuntoğlu, M.; Sağlam, H. Machinability Investigations Based on Tool Wear, Surface Roughness, Cutting Temperature, Chip Morphology and Material Removal Rate During Dry and MQL-Assisted Milling of Nimax Mold Steel. Lubricants. 2023, 11(3), 3. DOI: 10.3390/lubricants11030101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.