112
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing the borosilicate glass micromachining by using mixed alkaline electrolytes in the ECDM process

, & ORCID Icon
Pages 1224-1235 | Received 27 Sep 2023, Accepted 23 Jan 2024, Published online: 05 Feb 2024

References

  • Kumar, N.; Mandal, N.; Das, A. K. Micro-Machining Through Electrochemical Discharge Processes: A Review. Mater. Manuf. Process. 2020, 35(4), 363–404. DOI: 10.1080/10426914.2020.1711922.
  • Mishra, D. K.; Arab, J.; Dixit, P. Electrochemical Discharge Machining. In Advanced Machining Science, 1 st ed.;Jain, V.K., Ed. CRC Press, 2022; p 343. DOI: 10.1201/9780429160011-13.
  • Singh, T.; Arab, J.; Dixit, P. A Review on Microholes Formation in Glass-Based Substrates by Electrochemical Discharge Drilling for MEMS Applications. Mach. Sci. Technol. 2022, 26(2), 276–337. DOI: 10.1080/10910344.2022.2044857.
  • Rajput, V.; Goud, M.; Suri, N. M. Review—Electrochemical Discharge Machining: Gas Film Electrochemical Aspects, Stability Parameters, and Research Work. J. Electrochem. Soc. 2021, 168(1), 013503. DOI: 10.1149/1945-7111/abd516.
  • Bhuyan, B. K.; Yadava, V. Experimental Study of Traveling Wire Electrochemical Spark Machining of Borosilicate Glass. Mater. Manuf. Process. 2014, 29(3), 298–304. DOI: 10.1080/10426914.2013.852216.
  • Elhami, S.; Razfar, M. R. Effect of Ultrasonic Vibration on the Single Discharge of Electrochemical Discharge Machining. Mater. Manuf. Process. 2018, 33(4), 444–451. DOI: 10.1080/10426914.2017.1328113.
  • Bahar, D.; Dvivedi, A.; Kumar, P. On Innovative Approach in ECDM Process by Controlling the Temperature and Stirring Rate of the Electrolyte. Mater. Manuf. Process. 2023, 00, 1–19.
  • Elhami Joosheghan, S.; Rezvani, P.; Razfar, M. R. Study on the Double-Pass Electrochemical Discharge Machining Process. Mater. Manuf. Process. 2023, 38(7), 828–835. DOI: 10.1080/10426914.2022.2157433.
  • Mishra, D. K.; Arab, J.; Magar, Y.; Dixit, P. High Aspect Ratio Glass Micromachining by Multi-Pass Electrochemical Discharge Based Micromilling Technique. ECS J. Solid State. Sci Technol. 2019, 8(6), P322–P331. DOI: 10.1149/2.0191906jss.
  • Sabahi, N.; Razfar, M. R. Investigating the Effect of Mixed Alkaline Electrolyte (NaOh + KOH) on the Improvement of Machining Efficiency in 2D Electrochemical Discharge Machining (ECDM). Int. J. Adv. Manuf. Technol. 2018, 95(1–4), 643–657. DOI: 10.1007/s00170-017-1210-4.
  • Arab, J.; Mishra, D. K.; Dixit, P. Measurement and Analysis of the Geometric Characteristics of Microholes and Tool Wear for Varying Tool-Workpiece Gaps in Electrochemical Discharge Drilling. Meas. J. Int. Meas. Confed. 2021, 168, 108463. DOI: 10.1016/j.measurement.2020.108463.
  • Bhargav, K. V. J.; Balaji, P. S.; Sahu, R. K. Micromachining of Borosilicate Glass Using an Electrolyte-Sonicated-µ-ECDM System. Mater. Manuf. Process. 2023, 38(1), 64–77. DOI: 10.1080/10426914.2022.2089893.
  • Huang, S.; Ma, Q.; Liu, C.; Shi, X.; Wang, C. Research on Electrochemical Discharge Milling of TC4 Titanium Alloy. Mater. Manuf. Process. 2022, 37(16), 1823–1828. DOI: 10.1080/10426914.2022.2065006.
  • Kolhekar, K.; Sundaram, M. A Multiphase Simulation Study of Electrochemical Discharge Machining of Glass. Int. J. Adv. Manuf. Technol. 2019, 105(1–4), 1597–1608. DOI: 10.1007/s00170-019-04318-5.
  • Sharma, P.; Dixit, P. Investigation of Tool Wear in Alumina Micromachining by Multi-Tip ECDM. Mater. Manuf. Process. 2022, 37(3), 342–348. DOI: 10.1080/10426914.2021.2006218.
  • Arab, J.; Pawar, K.; Dixit, P. Effect of Tool-Electrode Material in Through-Hole Formation Using ECDM Process. Mater. Manuf. Process. 2021, 36(9), 1019–1027. DOI: 10.1080/10426914.2021.1885700.
  • Jui, S. K.; Kamaraj, A. B.; Sundaram, M. M. High Aspect Ratio Micromachining of Glass by Electrochemical Discharge Machining (ECDM). J. Manuf. Process. 2013, 15(4), 460–466. DOI: 10.1016/j.jmapro.2013.05.006.
  • Verma, A. K.; Mishra, D. K.; Pawar, K.; Dixit, P. Investigations into Surface Topography of Glass Microfeatures Formed by Pulsed Electrochemical Discharge Milling for Microsystem Applications. Microsyst. Technol. 2020, 26(6), 2105–2116. DOI: 10.1007/s00542-020-04770-4.
  • Arab, J.; Dixit, P. Influence of Tool Electrode Feed Rate in the Electrochemical Discharge Drilling of a Glass Substrate. Mater. Manuf. Process. 2020, 35(15), 1749–1760. DOI: 10.1080/10426914.2020.1784936.
  • Bian, J.; Ma, B.; Liu, X.; Qi, L. Experimental Study of Toolwear in Electrochemical Discharge Machining. Applied. Sciences. 2020, 10(15), 1–14. DOI: 10.3390/app10155039.
  • Behroozfar, A.; Razfar, M. R. Experimental Study of the Tool Wear During the Electrochemical Discharge Machining. Mater. Manuf. Process. 2016, 31(5), 574–580. DOI: 10.1080/10426914.2015.1004685.
  • Tang, W.; Zhu, Y.; Kang, X.; Mao, C. Experimental Investigation of Discharge Phenomena in Electrochemical Discharge Machining Process. Micromachines. 2023, 14(2), 367. DOI: 10.3390/mi14020367.
  • Arab, J.; Dixit, P. Gas Bubbles Entrapment Mechanism in the Electrochemical Discharge Machining Involving Multi-Tip Array Electrodes. J. Manuf. Process. 2023, 99, 38–52. DOI: 10.1016/j.jmapro.2023.05.038.
  • Leyva-Bravo, J.; Chiñas-Sanchez, P.; Hernandez-Rodriguez, A.; Hernandez-Alba, G. G. Electrochemical Discharge Machining Modeling Through Different Soft Computing Approaches. Int. J. Adv. Manuf. Technol. 2020, 106(7–8), 3587–3596. DOI: 10.1007/s00170-019-04766-z.
  • Mishra, D. K.; Pawar, K.; Dixit, P. Effect of Tool Electrode-Workpiece Gap in the Microchannel Formation by Electrochemical Discharge Machining. ECS J. Solid State. Sci Technol. 2020, 9(3), 034011. DOI: 10.1149/2162-8777/ab80b1.
  • Didar, T. F.; Dolatabadi, A.; Wüthrich, R. Characterization and Modeling of 2D-Glass Micro-Machining by Spark-Assisted Chemical Engraving (SACE) with Constant Velocity. J. Micromech. Microeng. 2008, 18(6), 065016. DOI: 10.1088/0960-1317/18/6/065016.
  • Han, M. S.; Chae, K. W.; Min, B. K. Fabrication of High-Aspect-Ratio Microgrooves Using an Electrochemical Discharge Micromilling Process. J. Micromech. Microeng. 2017, 27(5), 055004. DOI: 10.1088/1361-6439/aa64b9.
  • Bhargav, K. V. J.; Balaji, P. S.; Sahu, R. K.; Leblouba, M. Experimental Investigation on Machining Characteristics of Titanium Processed Using Electrolyte Sonicated µ-ECDM System. Sci. Rep. 2022, 12(1), 1–18. DOI: 10.1038/s41598-022-20001-4.
  • Tiwari, A. K.; Panda, S. S. Optimization of Process Parameters in ECDM Machining Using Taguchi Based Grey Relation Analysis. Meas. J. Int. Meas. Confed. 2023, 216, 112971. DOI: 10.1016/j.measurement.2023.112971.
  • Bhargav, K. V. J.; Balaji, P. S.; Sahu, R. K.; Katiyar, J. K. Multi-Response Optimization and Effect of Tool Rotation on Micromachining of PMMA Using an In-House Developed µ-ECDM System. CIRP J. Manuf. Sci. Technol. 2022, 38, 473–490. DOI: 10.1016/j.cirpj.2022.05.020.
  • Bhargav, K. V. J.; Balaji, P. S.; Sahu, R. K.; Katiyar, J. K. Exemplary Approach Using Tool Rotation-Assisted µ-ECDM for CFRP Composites Machining. Mater. Manuf. Process. 2023, 38(3), 271–283. DOI: 10.1080/10426914.2022.2072879.
  • Rajput, V.; Goud, M.; Suri, N. M. Performance Analysis of Closed-Loop Electrochemical Discharge Machining (CLECDM) During Micro-Drilling and Response Surface Methodology Based Multi-Response Parametric Optimisation. Adv. Mater. Process. Technol. 2022, 8(2), 1352–1382. DOI: 10.1080/2374068X.2020.1860494.
  • Tadepalli, A.; Pujari, K. N. S.; Mitra, K. A Crystallization Case Study Toward Optimization of Expensive to Evaluate Mathematical Models Using Bayesian Approach. Mater. Manuf. Process. 2023, 38(16), 2127–2134. DOI: 10.1080/10426914.2023.2238051.
  • Sharma, S.; Pantula, P. D.; Miriyala, S. S.; Mitra, K. A Novel Data-Driven Sampling Strategy for Optimizing Industrial Grinding Operation Under Uncertainty Using Chance Constrained Programming. Powder. Technology. 2021, 377, 913–923. DOI: 10.1016/j.powtec.2020.09.024.
  • Bellubbi, S.; N, S.; Mallick, B. Multi Response Optimization of ECDM Process Parameters for Machining of Microchannel in Silica Glass Using Taguchi–GRA Technique. Silicon. 2022, 14(8), 4249–4263. DOI: 10.1007/s12633-021-01167-4.
  • Manoj, A.; Miriyala, S. S.; Mitra, K. Multi-Objective Optimization Through a Novel Bayesian Approach for Industrial Manufacturing of Polyvinyl Acetate. Mater. Manuf. Process. 2023, 38(15), 1955–1963. DOI: 10.1080/10426914.2023.2195915.
  • Inapakurthi, R. K.; Mitra, K. Optimal Surrogate Building Using SVR for an Industrial Grinding Process. Mater. Manuf. Process. 2022, 37(15), 1701–1707. DOI: 10.1080/10426914.2022.2039699.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.