134
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance evaluation of coated tool in end milling of XH67MBTHO alloy

, , &
Pages 1342-1362 | Received 20 Jun 2023, Accepted 02 Jan 2024, Published online: 06 Mar 2024

References

  • Sousa, V. F. C.; Fernandes, F.; Silva, F. J. G.; Costa, R. D. F. S.; Sebbe, N.; Sales-Contini, R. C. M. Wear Behavior Phenomena of TiN/TiAlN HiPIMS PVD-Coated Tools on Milling Inconel 718. Metals. (Basel). 2023, 13(4), 684. DOI: 10.3390/met13040684.
  • Potthoff, N.; Agarwal, A.; Woste, F.; Wiederkehr, P.; Mears, L. Evaluation of Contrived Wear Methodology in End Milling of Inconel 718. J. Manuf. Sci. Eng. 2023, 145, 10. DOI: 10.1115/1.4062603.
  • Lei, X.; Wei, X.; He, Y. Effect of Cooling and Lubrication Conditions on Cutting Performance and Surface Integrity of Inconel 718 Superalloy in End Face Milling. Adv. Mech. Eng. 2023, 15, 3. DOI: 10.1177/16878132231158217.
  • Fernandes, G. H. N.; Barbosa, L. M. Q.; França, P. H. P.; Martins, P. S.; Machado, Á. R. Towards Green Machining: Wear Analysis of a Novel Eco-Friendly Cooling Strategy for Inconel 718. Int. J. Adv. Manuf. 2023, 129(1–2), 107–126. DOI: 10.1007/s00170-023-12207-1.
  • Martinho, R. P.; Silva, F. J. G.; Martins, C.; Lopes, H. Comparative Study of PVD and CVD Cutting Tools Performance in Milling of Duplex Stainless Steel. Int. J. Adv. Manuf. 2019, 102(5–8), 2423–2439. DOI: 10.1007/s00170-019-03351-8.
  • Xin, T.; Pei, H.; Shucai, Y. Coating and Micro-Texture Techniques for Cutting Tools. J. Mate. Sci. Springer. 2022, 17052–17104. DOI: 10.1007/s10853-022-07704-9.
  • Thakur, A.; Gangopadhyay, S. Influence of Tribological Properties on the Performance of Uncoated, CVD and PVD Coated Tools in Machining of Incoloy 825. Tribol. Int. 2016, 102, 198–212. DOI: 10.1016/j.triboint.2016.05.027.
  • Silva, F. J. G.; Martinho, R. P.; Martins, C.; Lopes, H.; Gouveia, R. M. Machining GX2CrNiMoN26-7-4 DSS Alloy: Wear Analysis of TiAlN and TiCN/Al2O3/TiN Coated Carbide Tools Behavior in Rough End Milling Operations. Coat. 2019, 9(6), 6. DOI: 10.3390/COATINGS9060392.
  • Cai, X.; Qin, S.; Li, J.; An, Q.; Chen, M. Experimental Investigation on Surface Integrity of End Milling Nickel-Based Alloy-Inconel 718. Mach. Sci. Technol. 2014, 18(1), 31–46. DOI: 10.1080/10910344.2014.863627.
  • Osman, K. A.; Yılmaz, V.; Ünver, H. Ö.; Şeker, U.; Kılıç, S. E. Slot Milling of Titanium Alloy with Hexagonal Boron Nitride and Minimum Quantity Lubrication and Multi-Objective Process Optimization for Energy Efficiency. J. Clean. Prod. 2020, 258. DOI: 10.1016/j.jclepro.2020.120739.
  • Yıldırım, Ç. V.; Kıvak, T.; Erzincanlı, F. Influence of Different Cooling Methods on Tool Life, Wear Mechanisms and Surface Roughness in the Milling of Nickel-Based Waspaloy with WC Tools. Arab. J. Sci. Eng. 2019, 44(9), 7979–7995. DOI: 10.1007/s13369-019-03963-y.
  • Varghese, V.; Ramesh, M. R.; Chakradhar, D. Influence of Deep Cryogenic Treatment on Performance of Cemented Carbide (WC-Co) Inserts During Dry End Milling of Maraging Steel. J. Manuf. Process. 2019, 37, 242–250. DOI: 10.1016/j.jmapro.2018.11.030.
  • Dhar, N. R.; Paul, S.; Chattopadhyay, A. B. Machining of AISI 4140 Steel Under Cryogenic Cooling-Tool Wear, Surface Roughness and Dimensional Deviation. J Mat.Pro. Tech. 2002, 123(3), 483–489. DOI: 10.1016/S0924-0136(02)00134-6.
  • Chauhan, D.; Makhesana, M. A.; Rahman Rashid, R. A.; Joshi, V.; Khanna, N. Comparison of Machining Performance of Ti-6Al-4V Under Dry and Cryogenic Techniques Based on Tool Wear, Surface Roughness, and Power Consumption. Lubr. 2023, 11(11), 493. DOI: 10.3390/lubricants11110493.
  • Deshpande, Y. V.; Ayer, S.; Agrawal, T.; Agrawal, V.; Madankar, T. A.; Barve, P. S. Application of Smart Strategies for Sustainable Manufacturing of Conventional Machining Process: A ReviewJ. Instit. Eng(India)Series C. SpringerDecember 1, 202310.1007/s40032-023-00995-0
  • Ravi, S.; Pradeep Kumar, M. Experimental Investigations on Cryogenic Cooling by Liquid Nitrogen in the End Milling of Hardened Steel. Cryogenics. (Guildf). 2011, 51(9), 509–515. DOI: 10.1016/j.cryogenics.2011.06.006.
  • Chetan, G.; Rao, S.; V, P. Environment Friendly Machining of Ni-Cr-Co Based Super Alloy Using Different Sustainable Techniques. Mater. Manuf. Process. 2016, 31(7), 852–859. DOI: 10.1080/10426914.2015.1037913.
  • Ünüvar, A.; Koyunbakan, M.; Bagci, M. Optimization and Effects of Machining Parameters on Delamination in Drilling of Pure and Al2O3/SiO2-Added GFRP Composites. Int. J. Adv. Manuf. 2022, 119(1–2), 657–675. DOI: 10.1007/s00170-021-08258-x.
  • Azmi, A. I.; Lin, R. J. T.; Bhattacharyya, D. Experimental Study of Machinability of GFRP Composites by End Milling. Mater. Manuf. Process. 2012, 27(10), 1045–1050. DOI: 10.1080/10426914.2012.677917.
  • Rafighi, M. The Cutting Sound Effect on the Power Consumption, Surface Roughness, and Machining Force in Dry Turning of Ti-6Al-4V Titanium Alloy. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2022, 236(6), 3041–3057. DOI: 10.1177/09544062211072411.
  • Tlusty, J. Dynamics of High-Speed Milling. J. Mfg. Sci. And Eng. 1986, 108(2), 59–67. DOI: 10.1115/1.3187052.
  • Abootorabi Zarchi, M. M.; Razfar, M. R.; Abdullah, A. Investigation of the Effect of Cutting Speed and Vibration Amplitude on Cutting Forces in Ultrasonic-Assisted Milling. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2012, 226(7), 1185–1191. DOI: 10.1177/0954405412439666.
  • Arunramnath, R.; Thyla, P. R.; Mahendrakumar, N.; Ramesh, M.; Siddeshwaran, A. Multi-Attribute Optimization of End Milling Epoxy Granite Composites Using TOPSIS. Mater. Manuf. Process. 2019, 34(5), 530–543. DOI: 10.1080/10426914.2019.1566960.
  • Shie, J. R. Optimization of Dry Machining Parameters for High-Purity Graphite in End-Milling Process by Artificial Neural Networks: A Case Study. Mater. Manuf. Process. 2006, 21(8), 838–845. DOI: 10.1080/03602550600728257.
  • Ghani, J. A.; Choudhury, I. A.; Hassan, H. H. Application of Taguchi Method in the Optimization of End Milling Parameters. J. Mater. Process. Technol. 2004, 145(1), 84–92. DOI: 10.1016/S0924-0136(03)00865-3.
  • Banda, T.; Ho, K. Y.; Akhavan Farid, A.; Lim, C. S. Characterization of Tool Wear Mechanisms and Failure Modes of TiAlN-Nbn Coated Carbide Inserts in Face Milling of Inconel 718. J. Mater. Eng. Perform. 2022, 31(3), 2309–2320. DOI: 10.1007/s11665-021-06301-2.
  • Pervaiz, S.; Ahmad, N.; Ishfaq, K.; Khan, S.; Deiab, I.; Kannan, S. Implementation of Sustainable Vegetable-Oil-Based Minimum Quantity Cooling Lubrication (MQCL) Machining of Titanium Alloy with Coated Tools. Lubr. 2022, 10(10), 10. DOI: 10.3390/lubricants10100235.
  • Jemielniak, K. Detection of Cutting-Edge Breakage in Turning. CIRP. Annals. 1992, 41(1), 97–100. DOI: 10.1016/S0007-8506(07)61161-5.
  • Ramesh, S.; Karunamoorthy, L.; Palanikumar, K. Surface Roughness Analysis in Machining of Titanium Alloy. Mater. Manuf. Process. 2008, 23(2), 174–181. DOI: 10.1080/10426910701774700.
  • Jackson, M. J.; Robinson, G. M.; Whitt, M. D.; da Silva, R. B.; da Silva, M. B.; Machado, A. R. Achieving Clean Production with Nanostructured Coated Milling Tools Dry Machining Low Carbon Steel. J. Clean. Prod. 2023, 422. DOI: 10.1016/j.jclepro.2023.138523.
  • Bourdim, M.; Zouambi, L.; Beida, M. D.; Kerrouz, S. Determination of a Wear Law for Uncoated Cutting Tools. Int. J. Sys. App., Eng. & Deve. 2022, 16, 60–65. DOI: 10.46300/91015.2022.16.12.
  • Nayak, J. P.; Chetan, C. Performance Evaluation of Micro-Textured Inserts Coupled with Solid Lubricants During the Sustainable Dry Machining of Inconel 825. J. Tribol. 2024, 146, 3. DOI: 10.1115/1.4064115.
  • Zhang, J.; Huang, X.; Kang, X.; Yi, H.; Wang, Q.; Cao, H. Energy Field-Assisted High-Speed Dry Milling Green Machining Technology for Difficult-To-Machine Metal Materials. Fro. Mech. Eng. 2023, 18(2), Higher Education Press Limited Company June 1, 2023. DOI: 10.1007/s11465-022-0744-9.
  • Cho Graduate, S. S.; Komvopoulos, S. K. Wear Mechanisms of Multi-Layer Coated Cemented Carbide Cutting Tools. J. Tribol. 1997, 119(1), 8–17. DOI: 10.1115/1.2832485.
  • Dhananchezian, M.; Rajkumar, K.; Prithivirajan, S. Cutting Velocity Influenced Machinability of Monel 400 by Coated Tool. Mater. Manuf. Process. 2023, 38(1), 116–125. DOI: 10.1080/10426914.2022.2105883.
  • Gu, J.; Barber, G.; Tung, S.; Gu, R.-J. Tool Life and Wear Mechanism of Uncoated and Coated Milling Inserts. Wear. 1999, 1999, 225–229, pp 273–284. DOI: 10.1016/S0043-1648(99)00074-5.
  • Ozcelik, B.; Kuram, E.; Simsek, B. T. Comparison of Dry and Wet End Milling of AISI 316 Stainless Steel. Mater. Manuf. Process. 2011, 26(8), 1041–1049. DOI: 10.1080/10426914.2010.515645.
  • Rajurkar, A.; Chinchanikar, S. Investigations on Homothetic and Hybrid Micro-Textured Tools During Turning Inconel-718. Mater. Manuf. Process. 2023, 39(4), 529–545. DOI: 10.1080/10426914.2023.2236188.
  • Ross, N. S.; Sivaraman, V.; Ananth, M. B. J.; Jebaraj, M. Multi Response Optimization of Dual Jet CO2+SQL in Milling Inconel 718. Mater. Manuf. Process. 2023, 38(6), 722–734. DOI: 10.1080/10426914.2022.2136378.
  • Banerjee, A.; Maity, K. Machinability Appraisal of Nitronic-50 Under Dry Environment Using Uncoated Carbide Inserts. Mater. Manuf. Process. 2023, 39(4), 506–517. DOI: 10.1080/10426914.2023.2219337.
  • Jawaid, A.; Koksal, S.; Sharif, S. Cutting Performance and Wear Characteristics of PVD Coated and Uncoated Carbide Tools in Face Milling Inconel 718 Aerospace Alloy. J. Mater. Process. Technol. 2001, 116(1), 2–9. DOI: 10.1016/S0924-0136(01)00850-0.
  • Osmond, L.; Cook, I.; Curtis, D.; Slatter, T. Tool Life and Wear Mechanisms of CVD Coated and Uncoated SiAlON Ceramic Milling Inserts When Machining Aged Inconel 718. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2023. DOI: 10.1177/09544054231180653.
  • Jebaraj, M.; Pradeep Kumar, M.; Yuvaraj, N.; Mujibar Rahman, G. Experimental Study of the Influence of the Process Parameters in the Milling of Al6082-T6 Alloy. Mater. Manuf. Process. 2019, 34(12), 1411–1427. DOI: 10.1080/10426914.2019.1594271.
  • Yu, W.; Li, Y.; Chen, J.; Zuo, Z.; Chen, D.; An, Q.; Chen, M.; Wang, H. Experimental Study on Chip Formation and Surface Quality in Milling of TiB2/Al Alloy Composites. Mater. Manuf. Process. November 17, 2020; 35 15, 1671–1679. DOI:10.1080/10426914.2020.1779937.
  • Quintana, G.; De Ciurana, J.; Ribatallada, J. Surface Roughness Generation and Material Removal Rate in Ball End Milling Operations. Mater. Manuf. Process. 2010, 25(6), 386–398. DOI: 10.1080/15394450902996601.
  • Hariprasad, B.; Selvakumar, S. J.; Samuel Raj, D. Effect of Cutting Edge Radius on End Milling Ti–6Al–4V Under Minimum Quantity Cooling Lubrication – Chip Morphology and Surface Integrity Study. Wear. 2022, 2022, 204307–499. DOI: 10.1016/j.wear.2022.204307.
  • Ambrosio, D.; Wagner, V.; Dessein, G.; Vivas, J.; Cahuc, O. Machine Learning Tools for FlowRelated Defects Detection in Friction Stir Welding. J. Manuf. Sci. Eng. 2023, 145(10), 10. DOI: 10.1115/1.4062457.
  • Khorasani, A. M.; Gibson, I.; Goldberg, M.; Littlefair, G. Characterizing the Effect of Cutting Condition, Tool Path, and Heat Treatment on Cutting Forces of Selective Laser Melting Spherical Component in Five-Axis Milling. J. Manuf. Sci. Eng. 2018, Tran. ASME(5). DOI: 10.1115/1.4039381.
  • Kosarac, A.; Mladjenovic, C.; Zeljkovic, M.; Tabakovic, S.; Knezev, M. Neural-Network-Based Approaches for Optimization of Machining Parameters Using Small Dataset. Mater. 2022, 15(3), 3. DOI: 10.3390/ma15030700.
  • Sharma, V.; Misra, J. P.; Singhal, S. Process Modeling and Optimization of Titanium Alloy Ti-6Al-7Nb During WEDM Using Regression and ANN. Proc. Inst. Mech. Eng., Part E: J. Pro. Mech. Eng. 2023. DOI: 10.1177/09544089231215227.
  • Hammouda, M.; Ghienne, M.; Dion, J. L.; Ben Yahia, N. Linear Regression and Artificial Neural Network Models for Predicting Abrasive Water Jet Marble Drilling Quality. Adv. Mech. Eng. September 1, 2022; 14 9, 168781322211234. DOI:10.1177/16878132221123426.
  • Mohanta, D. K.; Sahoo, B.; Mohanty, A. M. Optimization of Process Parameter in AI7075 Turning Using Grey Relational, Desirability Function and Metaheuristics. Mater. Manuf. Process. 2023, 38(12), 1615–1625. DOI: 10.1080/10426914.2023.2165671.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.