428
Views
29
CrossRef citations to date
0
Altmetric
Original

Mechanisms of PECAM-1-mediated cytoprotection and implications for cancer cell survival

, &
Pages 1409-1421 | Received 17 Mar 2005, Published online: 01 Jul 2009

References

  • Johnstone R W, Ruefli A A, Lowe S W. Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002; 108: 153–164
  • Kitada S, Pedersen I M, Schimmer A D, Reed J C. Dysregulation of apoptosis genes in hematopoietic malignancies. Oncogene 2002; 21: 3459–3474
  • Schimmer A D, Pedersen I M, Kitada S, Eksioglu-Demiralp E, Minden M D, Pinto R, et al. Functional blocks in caspase activation pathways are common in leukemia and predict patient response to induction chemotherapy. Cancer Res 2003; 63: 1242–1248
  • Schimmer A D, Munk-Pedersen I, Minden M D, Reed J C. Bcl-2 and apoptosis in chronic lymphocytic leukemia. Curr Treat Options Oncol 2003; 4: 211–218
  • Frisch S M, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol 1997; 9: 701–706
  • Watt S M, Williamson J, Genevier H, Fawcett J, Simmons D L, Hatzfeld A, et al. The heparin binding PECAM-1 adhesion molecule is expressed by CD34 + hematopoietic precursor cells with early myeloid and B-lymphoid cell phenotypes. Blood 1993; 82: 2649–2663
  • Jackson D E, Gully L M, Henshall T L, Mardell C E, Macardle P J. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is associated with a naive B-cell phenotype in human tonsils. Tissue Antigens 2000; 56: 105–116
  • Mazurov A V, Vinogradov D V, Kabaeva N V, Antonova G N, Romanov Y A, Vlasik T N, et al. A monoclonal antibody, VM64, reacts with a 130 kDa glycoprotein common to platelets and endothelial cells: heterogeneity in antibody binding to human aortic endothelial cells. Thromb Haemost 1991; 66: 494–499
  • Metzelaar M J, Korteweg J, Sixma J J, Nieuwenhuis H K. Biochemical characterization of PECAM-1 (CD31 antigen) on human platelets. Thromb Haemost 1991; 66(6)700–707
  • Newman P J. The role of PECAM-1 in vascular cell biology. Ann N Y Acad Sci 1994; 714: 165–174
  • Tanaka Y, Albelda S M, Horgan K J, van Seventer G A, Shimizu Y, Newman W, et al. CD31 expressed on distinctive T cell subsets is a preferential amplifier of beta 1 integrin-mediated adhesion. J Exp Med 1992; 176: 245–253
  • Torimoto Y, Rothstein D M, Dang N H, Schlossman S F, Morimoto C. CD31, a novel cell surface marker for CD4 cells of suppressor lineage, unaltered by state of activation. J Immunol 1992; 148: 388–396
  • Zehnder J L, Hirai K, Shatsky M, McGregor J L, Levitt L J, Leung L L. The cell adhesion molecule CD31 is phosphorylated after cell activation. J Biol Chem 1992; 267: 5243–5249, Down-regulation of CD31 in activated T lymphocytes
  • Muller W A, Ratti C M, McDonnell S L, Cohn Z A. A human endothelial cell-restricted, externally disposed plasmalemmal protein enriched in intercellular junctions. J Exp Med 1989; 170: 399–414
  • Albelda S M, Oliver P D, Romer L H, Buck C A. EndoCAM: a novel endothelial cell-cell adhesion molecule. J Cell Biol 1990; 110: 1227–1237
  • Newman P J, Berndt M C, Gorski J, White G C, Lyman S, Paddock C, Muller W A. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 1990; 247: 1219–1222
  • Sun J, Williams J, Yan H C, Amin K M, Albelda S M, DeLisser H M. Platelet endothelial cell adhesion molecule-1 (PECAM-1) homophilic adhesion is mediated by immunoglobulin-like domains 1 and 2 and depends on the cytoplasmic domain and the level of surface expression. J Biol Chem 1996; 271: 18561–18570
  • Sun Q H, DeLisser H M, Zukowski M M, Paddock C, Albelda S M, Newman P J. Individually distinct Ig homology domains in PECAM-1 regulate homophilic binding and modulate receptor affinity. J Biol Chem 1996; 271: 11090–11098
  • DeLisser H M, Christofidou-Solomidou M, Strieter R M, Burdick M D, Robinson C S, Wexler R S, et al. Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol 1997; 151: 671–677
  • Zhou Z, Christofidou-Solomidou M, Garlanda C, DeLisser H M. Antibody against murine PECAM-1 inhibits tumor angiogenesis in mice. Angiogenesis 1999; 3: 181–188
  • Cao G, O'Brien C D, Zhou Z, Sanders S M, Greenbaum J N, Makrigiannakis A, DeLisser H M. Involvement of human PECAM-1 in angiogenesis and in vitro endothelial cell migration. Am J Physiol Cell Physiol 2002; 282: C1181–C1190
  • Muller W A, Weigl S A, Deng X, Phillips D M. PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 1993; 178: 449–460
  • Vaporciyan A A, DeLisser H M, Yan H C, Mendiguren I I, Thom S R, Jones M L, et al. Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science 1993; 262: 1580–1582
  • Jackson D E, Ward C M, Wang R, Newman P J. The protein-tyrosine phosphatase SHP-2 binds platelet/endothelial cell adhesion molecule-1 (PECAM-1) and forms a distinct signaling complex during platelet aggregation. J Biol Chem 1997; 272: 6986–6993, Evidence for a mechanistic link between PECAM-1- and integrin-mediated cellular signaling
  • Masuda M, Osawa M, Shigematsu H, Harada N, Fujiwara K. Platelet endothelial cell adhesion molecule-1 is a major SH-PTP2 binding protein in vascular endothelial cells. FEBS Lett 1997; 408: 331–336
  • Jackson D E, Kupcho K R, Newman P J. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of platelet/endothelial cell adhesion molecule-1 (PECAM-1) that are required for the cellular association and activation of the protein-tyrosine phosphatase, SHP-2. J Biol Chem 1997; 272: 24868–24875
  • Sagawa K, Kimura T, Swieter M, Siraganian R P. The protein-tyrosine phosphatase SHP-2 associates with tyrosine-phosphorylated adhesion molecule PECAM-1 (CD31. J Biol Chem 1997; 272: 31086–31091
  • Cao M Y, Huber M, Beauchemin N, Famiglietti J, Albelda S M, Veillette A. Regulation of mouse PECAM-1 tyrosine phosphorylation by the Src and Csk families of protein-tyrosine kinases. J Biol Chem 1998; 273: 15765–15772
  • Hua C T, Gamble, Jr., Vadas M A, Jackson D E. Recruitment and activation of SHP-1 protein-tyrosine phosphatase by human platelet endothelial cell adhesion molecule-1 (PECAM-1. J Biol Chem 1998; 273: 28332–28340, Identification of immunoreceptor tyrosine-based inhibitory motif-like binding motifs and substrates
  • Pumphrey N J, Taylor V, Freeman S, Douglas M R, Bradfield P F, Young S P, et al. Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-gamma1 with PECAM-1/CD31. FEBS Lett 1999; 450: 77–83
  • Newton-Nash D K, Newman P J. A new role for platelet-endothelial cell adhesion molecule-1 (CD31): inhibition of TCR-mediated signal transduction. J Immunol 1999; 163: 682–688
  • Henshall T L, Jones K L, Wilkinson R, Jackson D E. Src homology 2 domain-containing protein-tyrosine phosphatases, SHP-1 and SHP-2, are required for platelet endothelial cell adhesion molecule-1/CD31-mediated inhibitory signaling. J Immunol 2001; 166: 3098–3106
  • Osawa M, Masuda M, Kusano K, Fujiwara K. Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule?. J Cell Biol 2002; 158: 773–785
  • Newman P J. Switched at birth: a new family for PECAM-1. J Clin Invest 1999; 103: 5–9
  • Patil S, Newman D K, Newman P J. Platelet endothelial cell adhesion molecule-1 serves as an inhibitory receptor that modulates platelet responses to collagen. Blood 2001; 97: 1727–1732
  • Jones K L, Hughan S C, Dopheide S M, Farndale R W, Jackson S P, Jackson D E. Platelet endothelial cell adhesion molecule-1 is a negative regulator of platelet-collagen interactions. Blood 2001; 98: 1456–1463
  • Wilkinson R, Lyons A B, Roberts D, Wong M X, Bartley P A, Jackson D E. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) acts as a regulator of B-cell development, B-cell antigen receptor (BCR)-mediated activation, and autoimmune disease. Blood 2002; 100: 184–193
  • Piali L, Albelda S M, Baldwin H S, Hammel P, Gisler R H, Imhof B A. Murine platelet endothelial cell adhesion molecule (PECAM-1)/CD31 modulates beta 2 integrins on lymphokine-activated killer cells. Eur J Immunol 1993; 23: 2464–2471
  • Leavesley D I, Oliver J M, Swart B W, Berndt M C, Haylock D N, Simmons P J. Signals from platelet/endothelial cell adhesion molecule enhance the adhesive activity of the very late antigen-4 integrin of human CD34 + hemopoietic progenitor cells. J Immunol 1994; 153: 4673–4683
  • Berman M E, Muller W A. Ligation of platelet/endothelial cell adhesion molecule 1 (PECAM-1/CD31) on monocytes and neutrophils increases binding capacity of leukocyte CR3 (CD11b/CD18. J Immunol 1995; 154: 299–307
  • Berman M E, Xie Y, Muller W A. Roles of platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31) in natural killer cell transendothelial migration and beta 2 integrin activation. J Immunol 1996; 156: 1515–1524
  • Varon D, Jackson D E, Shenkman B, Dardik R, Tamarin I, Savion N, Newman P J. Platelet/endothelial cell adhesion molecule-1 serves as a costimulatory agonist receptor that modulates integrin-dependent adhesion and aggregation of human platelets. Blood 1998; 91: 500–507
  • Chiba R, Nakagawa N, Kurasawa K, Tanaka Y, Saito Y, Iwamoto I. Ligation of CD31 (PECAM-1) on endothelial cells increases adhesive function of alphavbeta3 integrin and enhances beta1 integrin-mediated adhesion of eosinophils to endothelial cells. Blood 1999; 94: 1319–1329
  • Zhao T, Newman P J. Integrin activation by regulated dimerization and oligomerization of platelet endothelial cell adhesion molecule (PECAM)-1 from within the cell. J Cell Biol 2001; 152: 65–73
  • Maas M, Stapleton M, Bergom C, Mattson D L, Newman D K, Newman P J. Endothelial cell PECAM-1 confers protection against endotoxic shock. Am J Physiol Heart Circ Physiol 2005; 288: H159–H164
  • Carrithers M, Tandon S, Canosa S, Michaud M, Graesser D, Madri J A. Enhanced susceptibility to endotoxic shock and impaired STAT3 signaling in CD31-deficient mice. Am J Pathol 2005; 166: 185–196
  • Noble K E, Wickremasinghe R G, DeCornet C, Panayiotidis P, Yong K L. Monocytes stimulate expression of the Bcl-2 family member, A1, in endothelial cells and confer protection against apoptosis. J Immunol 1999; 162: 1376–1383
  • Bird I N, Taylor V, Newton J P, Spragg J H, Simmons D L, Salmon M, Buckley C D. Homophilic PECAM-1(CD31) interactions prevent endothelial cell apoptosis but do not support cell spreading or migration. J Cell Sci 1999; 112(Pt 12)1989–1997
  • Evans P C, Taylor E R, Kilshaw P J. Signaling through CD31 protects endothelial cells from apoptosis. Transplantation 2001; 71: 457–460
  • Ferrero E, Belloni D, Contini P, Foglieni C, Ferrero M E, Fabbri M, et al. Transendothelial migration leads to protection from starvation-induced apoptosis in CD34 + CD14 + circulating precursors: evidence for PECAM-1 involvement through Akt/PKB activation. Blood 2003; 101: 186–193
  • Gao C, Sun W, Christofidou-Solomidou M, Sawada M, Newman D K, Bergom C, et al. PECAM-1 functions as a specific and potent inhibitor of mitochondrial-dependent apoptosis. Blood 2003; 102: 169–179
  • Limaye V S, Li X, Hahn C, Xia P, Berndt M C, Vadas M A, Gamble J R. Sphingosine kinase-1 enhances endothelial cell survival through a PECAM-1-dependent activation of PI-3K/Akt and regulation of Bcl-2 family members. Blood 2005; 105: 3169–3177
  • Hengartner M O. The biochemistry of apoptosis. Nature 2000; 407: 770–776
  • Newman P J, Newman D K. Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol 2003; 23: 953–964
  • Pellegatta F, Chierchia S L, Zocchi M R. Functional association of platelet endothelial cell adhesion molecule-1 and phosphoinositide 3-kinase in human neutrophils. J Biol Chem 1998; 273: 27768–27771
  • Matsumura T, Wolff K, Petzelbauer P. Endothelial cell tube formation depends on cadherin 5 and CD31 interactions with filamentous actin. J Immunol 1997; 158: 3408–3416
  • Ilan N, Mahooti S, Rimm D L, Madri J A. PECAM-1 (CD31) functions as a reservoir for and a modulator of tyrosine-phosphorylated beta-catenin. J Cell Sci 1999; 112(Pt 18)3005–3014
  • Ilan N, Cheung L, Pinter E, Madri J A. Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation. J Biol Chem 2000; 275: 21435–21443
  • Fukuda Y, Aoyama Y, Wada A, Igarashi Y. Identification of PECAM-1 association with sphingosine kinase 1 and its regulation by agonist-induced phosphorylation. Biochim Biophys Acta 2004; 1636: 12–21
  • Ilan N, Cheung L, Miller S, Mohsenin A, Tucker A, Madri J A. Pecam-1 is a modulator of stat family member phosphorylation and localization: lessons from a transgenic mouse. Dev Biol 2001; 232: 219–232
  • O'Brien C D, Ji G, Wang Y X, Sun J, Krymskaya V P, Ruberg F L, et al. PECAM-1 (CD31) engagement activates a phosphoinositide-independent, nonspecific cation channel in endothelial cells. FASEB J 2001; 15: 1257–1260
  • Ji G, O'Brien C D, Feldman M, Manevich Y, Lim P, Sun J, et al. PECAM-1 (CD31) regulates a hydrogen peroxide-activated nonselective cation channel in endothelial cells. J Cell Biol 2002; 157: 173–184
  • Wong M X, Harbour S N, Wee J L, Lau L M, Andrews R K, Jackson D E. Proteolytic cleavage of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is regulated by a calmodulin-binding motif. FEBS Lett 2004; 568(1 – 3)70–78
  • Deaglio S, Morra M, Mallone R, Ausiello C M, Prager E, Garbarino G, et al. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J Immunol 1998; 160: 395–402
  • Oakes S A, Opferman J T, Pozzan T, Korsmeyer S J, Scorrano L. Regulation of endoplasmic reticulum Ca2 + dynamics by proapoptotic BCL-2 family members. Biochem Pharmacol 2003; 66: 1335–1340
  • Neel B G, Gu H, Pao L. The ‘Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 2003; 28: 284–293
  • Tartaglia M, Mehler E L, Goldberg R, Zampino G, Brunner H G, Kremer H, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001; 29: 465–468
  • Tartaglia M, Kalidas K, Shaw A, Song X, Musat D L, van d B I, et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet 2002; 70: 1555–1563
  • Kosaki K, Suzuki T, Muroya K, Hasegawa T, Sato S, Matsuo N, et al. PTPN11 (protein-tyrosine phosphatase, nonreceptor-type 11) mutations in seven Japanese patients with Noonan syndrome. J Clin Endocrinol Metab 2002; 87: 3529–3533
  • Yoshida R, Hasegawa T, Hasegawa Y, Nagai T, Kinoshita E, Tanaka Y, et al. Protein-tyrosine phosphatase, nonreceptor type 11 mutation analysis and clinical assessment in 45 patients with Noonan syndrome. J Clin Endocrinol Metab 2004; 89: 3359–3364
  • Tartaglia M, Niemeyer C M, Fragale A, Song X, Buechner J, Jung A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003; 34: 148–150
  • Loh M L, Vattikuti S, Schubbert S, Reynolds M G, Carlson E, Lieuw K H, et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 2004; 103: 2325–2331
  • Loh M L, Reynolds M G, Vattikuti S, Gerbing R B, Alonzo T A, Carlson E, et al. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group. Leukemia 2004; 18: 1831–1834
  • Tartaglia M, Martinelli S, Cazzaniga G, Cordeddu V, Iavarone I, Spinelli M, et al. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood 2004; 104: 307–313
  • Bentires-Alj M, Paez J G, David F S, Keilhack H, Halmos B, Naoki K, et al. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 2004; 64: 8816–8820
  • Tartaglia M, Niemeyer C M, Shannon K M, Loh M L. SHP-2 and myeloid malignancies. Curr Opin Hematol 2004; 11: 44–50
  • Zhang S Q, Yang W, Kontaridis M I, Bivona T G, Wen G, Araki T, et al. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 2004; 13: 341–355
  • Yuan L, Yu W M, Yuan Z, Haudenschild C C, Qu C K. Role of SHP-2 tyrosine phosphatase in the DNA damage-induced cell death response. J Biol Chem 2003; 278: 15208–15216
  • Ivins Z C, Kontaridis M I, Fornaro M, Feng G S, Bennett A M. SHP-2 regulates the phosphatidylinositide 3’-kinase/Akt pathway and suppresses caspase 3-mediated apoptosis. J Cell Physiol 2004; 199: 227–236
  • Wu C J, O'Rourke D M, Feng G S, Johnson G R, Wang Q, Greene M I. The tyrosine phosphatase SHP-2 is required for mediating phosphatidylinositol 3-kinase/Akt activation by growth factors. Oncogene 2001; 20: 6018–6025
  • Zhang S Q, Tsiaras W G, Araki T, Wen G, Minichiello L, Klein R, Neel B G. Receptor-specific regulation of phosphatidylinositol 3’-kinase activation by the protein tyrosine phosphatase Shp2. Mol Cell Biol 2002; 22: 4062–4072
  • Irby R B, Yeatman T J. Role of Src expression and activation in human cancer. Oncogene 2000; 19: 5636–5642
  • De Young B R, Swanson P E, Argenyi Z B, Ritter J H, Fitzgibbon J F, Stahl D J, et al. CD31 immunoreactivity in mesenchymal neoplasms of the skin and subcutis: report of 145 cases and review of putative immunohistologic markers of endothelial differentiation. J Cutan Pathol 1995; 22: 215–222
  • De Young B R, Frierson, Jr H F, Ly M N, Smith D, Swanson P E. CD31 immunoreactivity in carcinomas and mesotheliomas. Am J Clin Pathol 1998; 110: 374–377
  • Nicholson S A, McDermott M B, DeYoung B R, Swanson P E. CD31 immunoreactivity in small round cell tumors. Appl Immunohistochem Mol Morphol 2000; 8: 19–24
  • Parums D V, Cordell J L, Micklem K, Heryet A R, Gatter K C, Mason D Y. JC70: a new monoclonal antibody that detects vascular endothelium associated antigen on routinely processed tissue sections. J Clin Pathol 1990; 43: 752–757
  • Tang D G, Chen Y Q, Newman P J, Shi L, Gao X, Diglio C A, Honn K V. Identification of PECAM-1 in solid tumor cells and its potential involvement in tumor cell adhesion to endothelium. J Biol Chem 1993; 268: 22883–22894
  • Miettinen M, Lindenmayer A E, Chaubal A. Endothelial cell markers CD31, CD34, and BNH9 antibody to H- and Y-antigens – evaluation of their specificity and sensitivity in the diagnosis of vascular tumors and comparison with von Willebrand factor. Mod Pathol 1994; 7: 82–90
  • Martin-Padura I, De C C, Uccini S, Pilozzi E, Natali P G, Nicotra M R, et al. Expression of VE (vascular endothelial)-cadherin and other endothelial-specific markers in haemangiomas. J Pathol 1995; 175: 51–57
  • Ohsawa M, Naka N, Tomita Y, Kawamori D, Kanno H, Aozasa K. Use of immunohistochemical procedures in diagnosing angiosarcoma. Cancer 1995; 75: 2867–2874, Evaluation of 98 cases
  • Russell, Jr., Orchard G, Zelger B, Wilson J E. Immunostaining for CD31 and CD34 in Kaposi sarcoma. J Clin Pathol 1995; 48: 1011–1016
  • Poblet E, Gonzalez-Palacios F, Jimenez F J. Different immunoreactivity of endothelial markers in well and poorly differentiated areas of angiosarcomas. Virchows Arch 1996; 428: 217–221
  • Lin B T, Colby T, Gown A M, Hammar S P, Mertens R B, Churg A, Battifora H. Malignant vascular tumors of the serous membranes mimicking mesothelioma. Am J Surg Pathol 1996; 20: 1431–1439, A report of 14 cases
  • Klementsen B, Jorgensen L. Distribution of adhesion molecules on HeLa cells, platelets and endothelium in an in vitro model mimicking the early phase of metastasis. APMIS 1997; 105: 546–558, An immunogold electron microscopic study
  • Davidson B, Goldberg I, Gotlieb W H, Lerner-Geva L, Ben Baruch G, Kopolovic J. Ulex Europaeus lectin and anti-CD31 staining in squamous cell carcinoma of the uterine cervix: potential prognostic markers. Int J Gynecol Pathol 1998; 17: 205–210
  • Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 1999; 154: 385–394
  • Aroca F, Renaud W, Bartoli C, Bouvier-Labit C, Figarella-Branger D. Expression of PECAM-1/CD31 isoforms in human brain gliomas. J Neurooncol 1999; 43: 19–25
  • Tan S T, Velickovic M, Ruger B M, Davis P F. Cellular and extracellular markers of hemangioma. Plast Reconstr Surg 2000; 106: 529–538
  • Sapino A, Bongiovanni M, Cassoni P, Righi L, Arisio R, Deaglio S, Malavasi F. Expression of CD31 by cells of extensive ductal in situ and invasive carcinomas of the breast. J Pathol 2001; 194: 254–261
  • Perschbacher K, Jackson-Boeters L, Daley T. The adhesion molecules NCAM, HCAM, PECAM-1 and ICAM-1 in normal salivary gland tissues and salivary gland malignancies. J Oral Pathol Med 2004; 33: 230–236
  • Xie Y, Muller W A. Assignment of PECAM1 to human chromosome bands 17q22 – > q23 by in situ hybridization. Cytogenet Cell Genet 1996; 74: 156
  • Kallioniemi A, Kallioniemi O P, Piper J, Tanner M, Stokke T, Chen L, et al. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA 1994; 91: 2156–2160
  • Righi L, Deaglio S, Pecchioni C, Gregorini A, Horenstein A L, Bussolati G, et al. Role of CD31/platelet endothelial cell adhesion molecule-1 expression in in vitro and in vivo growth and differentiation of human breast cancer cells. Am J Pathol 2003; 162: 1163–1174
  • Stacchini A, Chiarle R, Antinoro V, Demurtas A, Novero D, Palestro G. Expression of the CD31 antigen in normal B-cells and non Hodgkin's lymphomas. J Biol Regul Homeost Agents 2003; 17: 308–315
  • Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003; 300: 1155–1159
  • Ohto H, Maeda H, Shibata Y, Chen R F, Ozaki Y, Higashihara M, et al. A novel leukocyte differentiation antigen: two monoclonal antibodies TM2 and TM3 define a 120-kd molecule present on neutrophils, monocytes, platelets, and activated lymphoblasts. Blood 1985; 66: 873–881
  • Goyert S M, Ferrero E M, Seremetis S V, Winchester R J, Silver J, Mattison A C. Biochemistry and expression of myelomonocytic antigens. J Immunol 1986; 137: 3909–3914
  • Ashman L K, Aylett G W, Cambareri A C, Cole S R. Different epitopes of the CD31 antigen identified by monoclonal antibodies: cell type-specific patterns of expression. Tissue Antigens 1991; 38: 199–207
  • Kuzu I, Bicknell R, Harris A L, Jones M, Gatter K C, Mason D Y. Heterogeneity of vascular endothelial cells with relevance to diagnosis of vascular tumours. J Clin Pathol 1992; 45: 143–148
  • Tassone P, Bonelli P, Tuccillo F, Turco M C, De R G, Morrone G, et al. Analysis of peripheral blood normal and malignant cells with the novel murine monoclonal antibody UN2. Immunol Lett 1994; 42: 55–62
  • Goldberger A, Middleton K A, Newman P J. Changes in expression of the cell adhesion molecule PECAM-1 (CD31) during differentiation of human leukemic cell lines. Tissue Antigens 1994; 44: 285–293
  • El-Marsafy S, Carosella E D, Agrawal S G, Gluckman E, Mansur I G, Elhabazi A, et al. Functional role of PECAM-1/CD31 molecule expressed on human cord blood progenitors. Leukemia 1996; 10: 1340–1346
  • Govender D, Harilal P, Dada M, Chetty R. CD31 (JC70) expression in plasma cells: an immunohistochemical analysis of reactive and neoplastic plasma cells. J Clin Pathol 1997; 50: 490–493
  • Sembries S, Pahl H, Stilgenbauer S, Dohner H, Schriever F. Reduced expression of adhesion molecules and cell signaling receptors by chronic lymphocytic leukemia cells with 11q deletion. Blood 1999; 93: 624–631
  • De W M, Renmans W, Jochmans K, Schots R, Lacor P, Trullemans F, et al. Different expression of adhesion molecules on CD34 + cells in AML and B-lineage ALL and their normal bone marrow counterparts. Eur J Haematol 1999; 63: 192–201
  • Vallario A, Chilosi M, Adami F, Montagna L, Deaglio S, Malavasi F, Caligaris-Cappio F. Human myeloma cells express the CD38 ligand CD31. Br J Haematol 1999; 105: 441–444
  • Brouwer R E, Hoefnagel J, Borger van Der B B, Jedema I, Zwinderman K H, Starrenburg I C, et al. Expression of co-stimulatory and adhesion molecules and chemokine or apoptosis receptors on acute myeloid leukaemia: high CD40 and CD11a expression correlates with poor prognosis. Br J Haematol 2001; 115: 298–308
  • Lee S T, Jang J H, Min Y H, Hahn J S, Ko Y W. AC133 antigen as a prognostic factor in acute leukemia. Leuk Res 2001; 25: 757–767
  • Ibrahim S, Jilani I, O'Brien S, Rogers A, Manshouri T, Giles F, et al. Clinical relevance of the expression of the CD31 ligand for CD38 in patients with B-cell chronic lymphocytic leukemia. Cancer 2003; 97: 1914–1919
  • Wang Y, Su X, Sorenson C M, Sheibani N. Modulation of PECAM-1 expression and alternative splicing during differentiation and activation of hematopoietic cells. J Cell Biochem 2003; 88: 1012–1024
  • Rhodes D R, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004; 6: 1–6
  • Rhodes D R, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA 2004; 101: 9309–9314
  • Alizadeh A A, Eisen M B, Davis R E, Ma C, Lossos I S, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511
  • Rosenwald A, Wright G, Chan W C, Connors J M, Campo E, Fisher R I, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 1937–1947
  • Oncomine Cancer Microarray Database. 2005, Ref Type: Electronic Citation
  • Yeoh E J, Ross M E, Shurtleff S A, Williams W K, Patel D, Mahfouz R, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 133–143

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.