256
Views
11
CrossRef citations to date
0
Altmetric
Original

Dendritic cells in allogeneic hematopoietic stem cell transplantation

&
Pages 1387-1396 | Received 13 Apr 2005, Published online: 01 Jul 2009

References

  • Banchereau J, Steinman R M. Dendritic cells and the control of immunity. Nature 1998; 392: 245–255
  • Hart D NJ. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 1997; 90: 3245–3287
  • Reis e Sousa C, Hieny S, Scharton-Kersten T, et al. In vivo microbial stimulation induces a rapid CD40L-independent production of IL-12 by dendritic cells and their re-distribution to T cell areas. Journal of Experimental Medicine 1997; 186: 1819–1829
  • Dalod M, Salazar-Mather T P, Malmgaard L, et al. Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. Journal of Experimental Medicine 2002; 195: 517–528
  • Ludewig B, Ehl S, Karrer U, Odermatt B, Hengartner H, Zinkernagel R M. Dendritic cells efficiently induce protective antiviral immunity. Journal of Virology 1998; 272: 3812–3818
  • Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor. Journal of Experimental Medicine 1994; 179: 1109–1118
  • Romani N, Reider N, Heuer M, et al. Generation of mature dendritic cells from human blood: an improved method with special regard to clinical applicability. Journal of Immunology Methods 1996; 196: 137–151
  • Bender A, Sapp M, Schuler G, Steinmann R M, Bhardwaj N. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. Journal of Immunology Methods 1996; 196: 121–135
  • Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high-levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. Journal of Experimental Medicine 1996; 184: 747–752
  • Fernandez N C, Lozier A, Flament C, et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Natural Medicine 1999; 5: 405–411
  • Fujii S, Shimizu K, Kronenberg M, Steinman R M. Prolonged interferon-gamma producing NKT response induced with α-galactosylceramide-loaded dendritic cells. Natural Immunology 2002; 3: 867–874
  • De Jong E C, Smits H H, Kapsenberg M L. Dendritic cell-mediated T cell polarization. Springer Seminars in Immunology 2005; 26: 289–307
  • Steinman R M, Hawiger D, Nussenzweig M C. Tolerogenic dendritic cells. Annual Reviews in Immunology 2003; 21: 685–711
  • Baron F, Storb R, Little M T. Hematopoietic cell transplantation. Archives of Medical Research 2003; 34: 528–544
  • Storb R, Yu C, Wagner J L, et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total antibody irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 1997; 89: 3048–3054
  • Kolb H J, Schattenberg A, Goldman J M, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European group for blood and marrow transplantation working party chronic leukemia. Blood 1995; 86: 2041–2050
  • Goulmy E. Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy. Immunology Review 1997; 157: 125–140
  • Slavin S, Nagler A, Naparstek E, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 1998; 91: 756–763
  • Giralt S, Estey E, Albitar M, et al. Engraftment of hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy. Blood 1997; 89: 4531–4536
  • McSweeney P A, Niederwieser D, Shizuru J A, et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001; 97: 3390–3400
  • Childs R, Chernoff A, Contentin N, et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem cell transplantation. New England Journal of Medicine 2000; 343: 750–758
  • Hentschke P, Barkholt L, Uzunel M, et al. Low-intensity conditioning and hematopoietic stem cell transplantation in patients with renal and colon carcinoma. Bone Marrow Transplant 2003; 31: 253–261
  • MacDonald K PA, Munster D J, Clark G J, Dzionek A, Schmitz J, Hart D NJ. Characterization of human blood dendritic cell subsets. Blood 2002; 100: 4512–4520
  • Dzionek A, Fuchs A, Schmidt P, et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. Journal of Immunology 2000; 165: 6037–6046
  • Borras F, Matthews N, Lowdell M, Navarrete C. Identification of both myeloid CD11c + and lymphoid CD11c − dendritic cell subsets in cord blood. British Journal of Haematology 2001; 113: 925–931
  • Bender J G, Unverzagt K L, Walker D, et al. Identification and comparison of CD34-positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry. Blood 1991; 77: 2591–2596
  • Santiago-Schwarz F, Belilos E, Diamond B, Carson S E. TNF-α in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages. Journal of Leukocyte Biology 1992; 52: 274–281
  • Galy A, Travis M, Cen D, Chen B. Human T, B, natural killer and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 1995; 3: 459–473
  • Van Voorhis W C, Hair L S, Steinman R M, Kaplan G. Human dendritic cells. Enrichment and characterisation from peripheral blood. Journal of Experimental Medicine 1982; 155: 1172–1187
  • Young J W, Steinman R M. Accessory cell requirements for the MLR and polyclonal mitogens, as studied with a new technique for enriching blood dendritic cells. Cell Immunology 1988; 111: 167–182
  • Fearnly D B, Whyte L F, Carnoutsos S A, Cook A H, Hart D NJ. Monitoring human blood dendritic cell numbers in normal individuals and in stem cell transplantation. Blood 1999; 93: 728–736
  • Macatonia S E, Lau R, Patterson S, Pinching A J, Knight S C. Dendritic cell infection, depletion and dysfunction in HIV-infected individuals. Immunology 1990; 71: 38–45
  • Hunt D WC, Huppertz H -I, Jiang H -J, Petty R E. Studies of human cord blood dendritic cells: evidence for functional immaturity. Blood 1994; 84: 4333–4343
  • Liu E, Tu W, Law H KW, Lau Y L. Decreased yield, phenotypic expression and function of immature monocyte-derived dendritic cells in cord blood. British Journal of Haematology 2001; 113: 240–246
  • Sorg R V, Kögler G, Wernet P. Identification of cord blood dendritic cells a an immature CD11c- population. Blood 1999; 93: 2302–2307
  • Crespo I, Pavia A, Couceiro A, Pimentel P, Orfao A, Regateiro F. Immunophenotypic and functional characterization of cord blood dendritic cells. Stem Cells Development 2004; 13: 63–70
  • Gratwohl A. EBMT JACIE Accreditation office. Overview of transplant activity in Europe. Hemtology Journal 2004; 5(Suppl 3)29–33
  • Cutler C, Giri S, Jeyapalan S, Paniagua D, Viswanathan A, Antin J H. Acute and chronic graft-versus-host disease after allogeneic peripheral-blood stem-cell and bone marrow transplantation. Journal of Clinical Oncology 2001; 19: 3685–3691
  • Horan J T, Liesveld J L, Fernandez I D, et al. Survival after HLA-identical allogeneic peripheral blood stem cell and bone marrow transplantation for hematologic malignancies: meta-analysis of randomized controlled trials. Bone Marrow Transplant 2003; 32: 293–298
  • Körbling M, Anderlini P. Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cell matter?. Blood 2001; 98: 2900–2908
  • Arpinati M, Green C L, Heimfeld S, Heuser J E, Anasetti C. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 2000; 95: 2484–2490
  • Sloand E, Kim S, Maciejewski J, et al. Pharmacologic doses of granulocyte colony-stimulating factor affect cytokine production by lymphocytes in vitro and in vivo. Blood 2000; 95: 2269–2274
  • Klangsinsirikul P, Russell N. Peripheral blood stem cell harvests from G-CSF-stimulated donors contain a skewed TH2 CD4 phenotype and a predominance of type 2 dendritic cells. Experimental Hematology 2002; 30: 495–501
  • Pan L, Delmonte J, Jalonen C, Ferrara J. Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes T-lymphocytes towards type-2 cytokine production and reduced severity of experimental graft-versus-host disease. Blood 1995; 86: 4422–4429
  • Zeng D, Dejbakhsh-Jones S, Strober S. Granulocyte colony-stimulating factor reduces the capacity of blood mononuclear cells to induce graft-versus-host disease: impact on blood progenitor cell transplantation. Blood 1997; 90: 453–463
  • Krenger W, Snyder K M, Byon J C, Falzarano G, Ferrara J L. Polarized type 2 alloreactive CD4 + and CD8 + donor T cells fail to induce experimental acute graft-versus-host disease. Journal of Immunology 1995; 155: 585–593
  • Fowler D H, Kurasawa K, Smith R, Eckhaus M A, Gress R E. Donor CD4-enriched cells of TH2 cytokine phenotype regulate graft-versus-host disease without impairing allogeneic engraftment in sublethally irradiated mice. Blood 1994; 84: 3540–3549
  • Waller E K, Rosenthal H, Jones T W, et al. Larger numbers of CD4bright dendritic cells in donor bone marrow are associated with increased relapse after allogeneic bone marrow transplantation. Blood 2001; 97: 2948–2956
  • Kitabayashi A, Hirokawa M, Hatano Y, et al. Granulocyte colony-stimulating factor down-regulates allogeneic immune responses by posttranscriptional inhibition of tumor necrosis factor-α production. Blood 1995; 86: 2220–2227
  • Volpi I, Perruccio K, Tosti A, et al. Postgrafting administration of granulocyte colony-stimulating factor impairs functional immune recovery in recipients of human leukocyte antigen haplotype-mismatched hematopoietic transplants. Blood 2001; 97: 2514–2521
  • Krenger W, Hill G R, Ferrara J L. Cytokine cascades in acute graft-versus-host disease. Transplantation 1997; 64: 553–558
  • Parkman R, Weinberg K I. Immune reconstitution following hematopoietic cell transplantation. Thomas' hematopoietic cell transplantation, K G Blume, S J Forman, F R Appelbaum. Blackwell Publishing, OxfordUK 2004; 853–861, 3rd
  • Chklovskaia E, Nowbakht P, Nissen C, Gratwohl A, Bargetzi M, Wodnar-Filipowicz A. Reconstitution of dendritic and natural killer-cell subsets after allogeneic stem cell transplantation: effects of endogenous flt ligand. Blood 2004; 103: 3860–3868
  • Auffermann-Gretzinger S, Lossos I S, Vayntrub T A, et al. Rapid establishment of dendritic cell chimerism in allogeneic hematopoietic cell transplant recipients. Blood 2002; 99: 1442–1448
  • Morse M A, Rizzieri D, Stenzel T T, et al. Dendritic cell recovery following nonmyeloablative allogeneic stem cell transplants. Journal of Hematotherapy Stem Cell Research 2002; 11: 659–668
  • Mohty M, Gaugler B, Faucher C, et al. Recovery of lymphocyte and dendritic cell subsets following reduced intensity allogeneic bone marrow transplantation. Hematology 2002; 7: 157–164
  • Fagnoni F F, Oliviero B, Giorgiani G, et al. Reconstitution dynamics of plasmacytoid and myeloid dendritic cell precursors after allogeneic myeloablative hematopoietic stem cell transplantation. Blood 2004; 104: 281–289
  • Reddy V, Iturraspe J A, Tzolas A C, Meier-Kriesche H U, Schold J, Wingard J R. Low dendritic cell count after allogeneic hematopoietic stem cell transplantation predicts relapse, death, and acute graft-versus-host disease. Blood 2004; 103: 4330–4335
  • Mohty M, Blaise D, Faucher C, et al. Impact of plasmacytoid dendritic cells on outcome after reduced-intensity conditioning allogeneic stem cell transplantation. Leukemia 2005; 19: 1–6
  • Urbini B, Arpinati M, Bonifazi F, et al. Allogeneic graft CD34 + cell dose correlates with dendritic cell dose and clinical outcome, but not with dendritic cell reconstitution after transplant. Experimental Hematology 2003; 31: 953–958
  • Nachbaur D, Kircher B, Eisendle K, Lätzer K, Haun M, Gastl G. Phenotype, function and chimaerism of monocyte-derived blood dendritic cells after allogeneic haematopoietic stem cell transplantation. British Journal of Haematology 2003; 123: 119–126
  • Childs R, Clave E, Contentin N, et al. Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation: full donor T-cell chimerism precedes alloimmune responses. Blood 1999; 94: 3234–3241
  • Sullivan K M. Graft-vs.-Host Disease. Thomas' hematopoietic cell transplantation, K G Blume, S J Forman, F R Appelbaum. Blackwell Publishing, OxfordUK 2004; 635–664, 3rd ed
  • Shlomchik W D, Couzens M S, Tang C B, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999; 285: 412–415
  • Chan G W, Gorgun G, Miller K B, Foss F M. Persistence of host dendritic cells after transplantation is associated with graft-versus-host disease. Biology of Blood Marrow Transplant 2003; 9: 170–176
  • Duffner U A, Maeda Y, Cooke K R, et al. Host dendritic cells alone are sufficient to initiate acute graft-versus-host disease. Journal of Immunology 2004; 172: 7393–7398
  • Anderson B E, McNiff J M, Jain D, Blazar B R, Shlomchik W D, Shlomshik M J. Distinct roles for donor- and host-derived antigen-presenting cells and costimulatory molecules in murine chronic graft-versus-host disease: requirements depend on target organ. Blood 2005; 105: 2227–2234
  • Zhang Y, Louboutin J P, Zhu J, et al. Preterminal host dendritic cells in irradiated mice prime CD8 + T cell-mediated acute graft-versus-host disease. Journal of Clinical Investigations 2002; 109: 1335–1344
  • Ruggieri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100
  • Zhang Y, Shlomchik D, Joe G, et al. APCs in the liver and spleen recruit activated allogeneic CD8 + T cells to elicit hepatic graft-versus-host disease. Journal of Immunology 2002; 169: 7111–7118
  • Merad M, Hoffmann P, Ranheim E, et al. Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Natural Medicine 2004; 10: 510–517
  • Merad M, Manz M G, Karsunky H, et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Natural Immunology 2002; 3: 1135–1141
  • Emile J F, Haddad E, Fraitag S, Canioni D, Fischer A, Brousse N. Detection of donor-derived Langerhans cells in MHC class I immunodeficient patients after allogeneic bone marrow transplantation. British Journal of Haematology 1997; 98: 480–484
  • Matte C C, Liu J, Cormier J, et al. Donor APCs are required for maximal GVHD but not for GVL. Natural Medicine 2004; 10: 987–992
  • Takebayashi M, Amakawa R, Tajima K, et al. Blood dendritic cells are decreased in acute graft-versus-host disease. Bone Marrow Transplant 2004; 33: 989–996
  • Asagoe K, Takahashi K, Yoshino T, et al. Numerical, morphological and phenotypic changes in Langerhans cells in the course of murine graft-versus-host disease. British Journal of Dermatology 2001; 145: 918–927
  • Della Porta M, Rigolin G M, Alessandrino E P, et al. Dendritic cell recovery after allogeneic stem cell transplantation in acute leukemia: correlations with clinical and transplant characteristics. European Journal of Haematology 2004; 72: 18–25
  • Arpinati M, Chirumbulo G, Bandini G, et al. Graft versus host disease affects DC2-recovery after allogeneic PBSC transplantation. Bone Marrow Transplant 2002; 29(Suppl. 2)175(Abstr. 661
  • Clark F J, Freeman L, Dzionek A, et al. Origin and subset distribution of peripheral blood dendritic cells in patients with chronic graft-versus-host disease. Transplantation 2003; 75: 221–225
  • Sato K, Yamashita N, Baba M, Matsuyama T. Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood 2003; 101: 3581–3589
  • Jonuleit H, Schmitt E, Steinbrink K, Enk A H. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends in Immunology 2001; 22: 394–400
  • Cobbold S P, Nolan K F, Graca L, et al. Regulatory T cells and dendritic cells in transplantation tolerance: molecular markers and mechanisms. Immunology Reviews 2003; 196: 109–124
  • Hackstein H, Thomson A W. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nature Immunology 2004; 4: 24–34
  • Lagaraine C, Lebranchu Y. Effects of immunosuppressive drugs on dendritic cells and tolerance induction. Transplantation 2003; 75(Suppl)37–42
  • Moser M, De Smedt T, Sornasse T, et al. Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. European Journal of Immunology 1995; 25: 2818–2824
  • Vanderheyde N, Verhasselt V, Goldman M, Willems F. Inhibition of human dendritic cell functions by methylprednisolone. Transplantation 1999; 67: 1342–1347
  • Woltman A M, de Fijter J W, Kamerling S WA, Paul L C, Daha M R, van Kooten C. The effect of calcineurin inhibitors and corticosteroids on the differentiation of human dendritic cells. European Journal of Immunology 2000; 30: 1807–1812
  • Auphan N, DiDonato J A, Rosette C, Helmberg A, Karin M. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 1995; 270: 232–233
  • Shimizu K, Fujii S, Fujimoto K, et al. Tacrolimus (FK506) treatment of CD34 + hematopoietic progenitor cells promote the development of dendritic cells that drive CD4 + T cells towards Th2 responses. Journal of Leukocyte Biology 2000; 68: 633–640
  • Szabo G, Gavala C, Mandrekar P. Tacrolimus and cyclosporine A inhibit allostimulaory capacity and cytokine production of human myeloid dendritic cells. Journal of Investigative Medicine 2001; 49: 442–449
  • Salgado C G, Nakamura K, Sugaya M, et al. Differential effects of cytokines and immunosuppressive drugs on CD40, B7-1, and B7-2 expression on purified epidermal Langerhans cells. Journal of Investigative Dermatology 1999; 113: 1021–1027
  • Schuller E, Oppel T, Bornhovd E, Wetzel S, Wollenberg A. Tacrolimus ointment causes inflammatory dendritic epidermal cell depletion but no Langerhans cell apoptosis in patients with atopic dermatitis. Allergy Clinics on Immunology 2004; 114: 137–143
  • Borghi-Cirri M B, Riccardi-Arbi R, Bacci S, et al. Inhibited differentiation of Langerhans cells in the rat epidermis upon systemic treatment with cyclosporin A. Histology & Histopathology 2001; 16: 107–112
  • Knight S C, Roberts M, Macatonia S E, Edwards A J. Blocking of acquisition and presentation of antigen by dendritic cells with cyclosporine. Studies with fluorescin isothiocyanate. Transplantation 1988; 46: 48–53
  • Robert M S, Knight S C. Low-dose immunosuppression by cyclosporine operating via antigen-presenting dendritic cells. Transplantation 1990; 50: 91–95
  • Dupuy P, Bagot M, Michel L, Descourt B, Dubertret L. Cyclosporin A inhibits antigen-presenting functions of freshly isolated Langerhans cells in vitro. Journal of Investigative Dermatology 1991; 96: 408–413
  • Demidem A, Taylor J R, Grammer S F, Streilein J W. Comparison of effects of transforming growth factor-beta and cyclosporin A on antigen-presenting cells of blood and epidermis. Journal of Investigations 1991; 96: 401–407
  • Varey A M, Champion B R, Cooke A. Cyclosporine affects the function of antigen-presenting cells. Immunology 1986; 57: 111–114
  • Sauma D, Fierro A, Mora J R, et al. Cyclosporine preconditions dendritic cells during differentiation and reduces IL-2 and IL-12 production following activation: a potential tolerogenic effect. Transplantation Proceedings 2003; 35: 2515–2517
  • Hackstein H, Taner T, Zahorchak A F, Morelli A E, Logar A J, Gessner A, Thomson A W. Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood 2003; 101: 4457–4463
  • Hackstein H, Taner T, Logar A J, Thomson A W. Rapamycin inhibits macropinocytosis and mannose receptor-mediated endocytosis by bone marrow-derived dendritic cells. Blood 2002; 100: 1084–1087
  • Taner T, Hackstein H, Wang Z, Morelli A E, Thomson A W. Rapamycin-treated, alloantigen-pulsed host dendritic cells induce AG-specific T cell regulation and prolong graft survival. American Journal of Transplantation 2005; 5: 228–236
  • Monti P, Allavena P, Di Carlo V, Piemonti L. Effects of anti-lymphocytes and anti-thymocytes globulin on human dendritic cells. International Immunopharmacology 2003; 3: 189–196
  • Fang L, Fehse B, Engel M, Zander A, Kröger N. Antithymocyte globulin induces ex vivo and in vivo depletion of myeloid and plasmacytoid dendritic cells. Transplantation 2005; 79: 369–371
  • Ratzinger G, Reagan J L, Heller G, Busam K J, Young J W. Differential CD52 expression by distinct myeloid dendritic cell subsets: implications for alemtuzumab activity at the level of antigen presentation in allogeneic graft-versus-host interactions in transplantation. Blood 2003; 101: 1422–1429
  • Collin M P, Munster D, Clark G, Wang X N, Dickinson A M, Hart D N. In vitro depletion of tissue-derived dendritic cells by CMRF-44 antibody and alemtuzumab: implications for the control of graft-versus-host disease. Transplantation 2005; 27: 722–725
  • Klangsirikul P, Carter I G, Byrne J L, Hale G, Russell N H. Campath-1G causes rapid depletion of circulating host dendritic cells (DCs) before allogeneic transplantation but does not delay DC reconstitution. Blood 2002; 99: 2586–2591
  • Liu H N, Wong C K. In vitro immunosuppressive effects of methotrexate and azathioprine on Langerhans cells. Archives of Dermatology Research 1997; 289: 94–97
  • Mehling A, Grabbe S, Voskort M, et al. Mycophenolate mofetil impairs the maturation and function of murine dendritic cells. Journal of Immunology 2000; 165: 2374–2381
  • Colic M, Stojic-Vukanic Z, Pavlovic B, Jandric D, Stefanoska I. Mycophenolate mofetil inhibits differentiation, maturation and allostimulatory function of human monocyte-derived dendritic cells. Clinical & Experimental Immunology 2003; 134: 63–69
  • Greinix H T, Volc-Platzer B, Rabitsch W, et al. Successful use of extracorporeal photochemotherapy in the treatment of severe acute and chronic graft-versus-host disease. Blood 1998; 92: 3098–3104
  • Gorgun G, Miller K B, Foss F M. Immunologic mechanisms of extracorporeal photochemotherapy in chronic graft-versus-host diesease. Blood 2002; 100: 941–947
  • Riddell S R, Watanabe K S, Goodrich J M, Li C R, Agha M E, Greenberg P D. Restoration of viral immunity in immunodeficient humans by adoptive transfer of T cell clones. Science 1992; 257: 238–241
  • Walter E A, Greenberg P D, Gilbert M J, Finch R J, Watanabe K S, Thomas E D, Riddell S R. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. New England Journal of Medicine 1995; 333: 1038–1044
  • Einsele H, Roosnek E, Rufer N, et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 2002; 99: 3916–3922
  • Hebart H, Brugger W, Grigoleit U, et al. Risk for cytomegalovirus disease in patients receiving polymerase chain reaction-based preemptive antiviral therapy after allogeneic stem cell transplantation depends on transplantation modality. Blood 2001; 97: 2183–2185
  • Singhal S, Shaw J C, Ainsworth J, et al. Direct visualization and quantitation of cytomegalovirus-specific CD8 + cytotoxic T-lymphocytes in liver transplant patients. Transplantation 2000; 69: 2251–2259
  • Engstrand M, Tournay C, Peyrat M A, et al. Characterization of CMVpp65-specific CD8 + T lymphocytes using MHC tetramers in kidney transplant patients and healthy participants. Transplantation 2000; 69: 2243–2250
  • Rauser G, Einsele H, Sinzger C, et al. Rapid generation of combined CMV-specific CD4 + and CD8 + T-cell lines for adoptive transfer into recipients of allogeneic stem cell transplants. Blood 2004; 103: 3565–3372
  • Einsele H, Hebart H. CMV-Specific immunotherapy. Human Immunology 2004; 65: 558–564
  • Einsele H, Hebart H. Cellular immunity to viral and fungal antigens. Current Opinions in Hematology 2002; 9: 485–489
  • Romani L, Kaufmann S HE. Immunity to fungi. Research in Immunology 1998; 149: 277–281
  • Buentke E, Scheynius A. Dendritic cells and fungi. APMIS 2003; 111: 789–796
  • Claudia M, Bacci A, Silvia B, Gaziano R, Spreca A, Romani L. The interaction of fungi with dendritic cells: implications for Th immunity and vaccination. Current Molecular Medicine 2002; 2: 507–524
  • Braedel S, Radsak M, Einsele H, et al. Aspergillus fumigatus antigens activate innate immune cells via toll-like receptors 2 and 4. British Journal of Haematology 2004; 125: 392–399
  • Bozza S, Gaziano R, Spreca A, et al. Dendritic cells transport conidia and hyphae of aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. Journal of Immunology 2002; 168: 1362–1371
  • Bozza S, Montagnoli C, Gaziano R, et al. Dendritic cell-based vaccination against opportunistic fungi. Vaccine 2004; 22: 857–864
  • Bacci A, Montagnoli C, Perruccio K, et al. Dendritic cells pulsed with fungal RNA induce protective immunity to candida albicans in hematopoietic transplantation. Journal of Immunology 2002; 168: 2904–2913
  • Grazziutti M, Przepiorka D, Rex J H, Braunschweig I, Vadhan-Raj S, Savary C A. Dendritic cell-mediated stimulation of the in vitro lymphocyte response to Aspergillus. Bone Marrow Transplantation 2001; 27: 647–652
  • Ramadan G, Davies B, Kurup V P, Keever-Taylor C A. Generation of Th1 T cell responses directed to a HLA Class II restricted epitope from the Aspergillus f16 allergen. Clinical & Experimental Immunology 2005; 139: 257–267
  • Shao C, Qu J, He L, et al. Dendritic cells transduced with an adenovirus vector encoding interleukin-12 are a potent vaccine for invasive pulmonary aspergillosis. Genes in Immunology 2005; 6: 103–114
  • Bozza S, Perruccio K, Montagnoli C, et al. A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood 2003; 102: 3807–3814
  • Kolb H J, Schmid C, Barrett A J, Schendel D J. Graft-versus-leukemia reactions in allogeneic chimeras. Blood 2004; 103: 767–776
  • Mackinnon S, Papadopoulos E B, Carabasi M H, et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 1995; 86: 1261–1268
  • Marks D I, Lush R, Cavenagh J, et al. The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation. Blood 2002; 100: 3108–3114
  • Bleakley M, Riddell S R. Molecules and mechanisms of the graft-versus-leukaemia effect. Nature Reviews 2004; 4: 371–380
  • Spierings E, Wieles B, Goulmy E. Minor histocompatibility antigens—big in tumour therapy. Trends in Immunology 2004; 25: 56–60
  • Dallal R M, Lotze M T. The dendritic cell and human cancer vaccines. Current Opinions in Immunology 2000; 12: 583–588
  • Banchereau J, Schuler-Thurner B, Palucka A K, Schuler G. Dendritic cells as vectors for therapy. Cell 2001; 106: 271–274
  • Steinman R M, Dhodapkar M. Active immunization against cancer with dendritic cells: the near future. International Journal of Cancer 2001; 94: 459–473
  • Schuler G, Schuler-Thurner B, Steinman R M. The use of dendritic cells in cancer immunotherapy. Current Opinions in Immunology 2003; 15: 138–147
  • Reichardt V L, Brossart P. Current status of vaccination therapy for leukemias. Current Hematology Reports 2005; 4: 73–76
  • Cathart K, Pinilla-Ibarz J, Korontsvit T, et al. A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood 2004; 103: 1037–1042
  • Ossenkoppele G J, Stam A G, Westers T M, et al. Vaccination of chronic myeloid leukemia patients with autologous in vitro cultured dendritic cells. Leukemia 2003; 17: 1424–1426
  • Pinilla-Ibarz J, Cathcart K, Korontsvit T, et al. Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood 2000; 95: 1781–1787
  • Motta M R, Castellani S, Rizzi S, et al. Generation of dendritic cells from CD14 + monocytes positively selected by immunomagnetic adsorption for multiple myeloma patients enrolled in a clinical trial of anti-idiotype vaccination. British Journal of Haematology 2002; 121: 240–250
  • Reichardt V L, Milazzo C, Brugger W, Einsele H, Kanz L, Brossart P. Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells. Haematologica 2003; 88: 1139–1149
  • Reichardt V L, Okada C Y, Liso A, et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood 1999; 93: 2411–2419
  • Maier T, Tun-Kyi A, Tassis A, et al. Vaccination of patients with cutaneous T-cell lymphoma using intranodal injection of autologous tumor-lysate-pulsed dendritic cells. Blood 2003; 102: 2338–2344
  • Timmerman J M, Czerwinski D K, Davis T A, et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002; 99: 1517–1526
  • Davis T A, Hsu F J, Caspar C B, et al. Idiotype vaccination following ABMT can stimulate specific anti-idiotype immune responses in patients with B cell lymphoma. Biology of Blood Marrow Transplantation 2001; 7: 517–522
  • Zöller M. Tumor vaccination after allogeneic bone marrow cell reconstitution of the nonmyeloablative conditioned tumor-bearing murine host. Journal of Immunology 2003; 171: 6941–6953
  • Zeis M, Frenzke H, Schmitz N, Uharek L, Stenmann J. Idiotype protein-pulsed dendritic cells produce a strong anti-myeloma effects after syngeneic stem cell transplantation. Bone Marrow Transplantation 2002; 29: 213–221

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.