648
Views
117
CrossRef citations to date
0
Altmetric
Original

Detection of molecular targets on the surface of CD34+/CD38− stem cells in various myeloid malignancies

, , , , , & , MD show all
Pages 207-222 | Received 06 Jul 2005, Published online: 01 Jul 2009

References

  • Tefferi A. The pathogenesis of chronic myeloproliferative diseases. International Journal of Hematology 2001; 73: 170–176
  • Kelly L M, Gilliland D G. Genetics of myeloid leukemias. Annual Reviews in Genomics & Human Genetics 2002; 3: 179–198
  • Hirai H. Molecular pathogenesis of MDS. International Journal of Hematology 2002; 2: 213–221
  • Goldman J M. Myeloproliferative and myelodysplastic syndromes: the future. Hematology & Oncology Clinics of North America 2003; 17: 1261–1269
  • Bennett J M, Kouides P A, Forman S J. The myelodysplastic syndromes: morphology, risk assessment, and clinical management. International Journal of Hematology 2002; 762: 228–238
  • Druker B J, O'Brien S G, Cortes J, Radich J. Chronic myelogenous leukemia. Hematology 2002—American Society of Hematology Education Program 2002; 1: 111–135
  • Valent P, Akin C, Sperr W, Mayerhofer M, Födinger M, Fritsche-Polanz R, et al. Mastocytosis: pathology, genetics, and current options for therapy. Leukemia & Lymphoma 2005; 46: 35–48
  • Tefferi A. Chronic myeloid disorders: classification and treatment overview. Seminars in Hematology 2001; 38: 1–4
  • Estey E H. Therapeutic options for acute myelogenous leukemia. Cancer 2001; 92: 1059–1073
  • O'Brien S, Tefferi A, Valent P. Chronic myelogenous leukemia and myeloproliferative disease. Hematology 2004—American Society of Hematology Education Program 2004; 1: 146–162
  • Ravandi F, Talpaz M, Kantarjian H, Estrov Z. Cellular signalling pathways: new targets in leukaemia therapy. British Journal of Haematology 2002; 116: 57–77
  • John A M, Thomas N S, Mufti G J, Padua R A. Targeted therapies in myeloid leukemia. Seminars in Cancer Biology 2004; 14: 41–62
  • Valent P, Ghannadan M, Akin C, Krauth M T, Selzer E, Mayerhofer M, et al. On the way to targeted therapy of mast cell neoplasms: identification of molecular targets in neoplastic mast cells and evaluation of arising treatment concepts. European Journal of Clinical Investigations 2004; 34: 41–52
  • Daub H, Specht K, Ullrich A. Strategies to overcome resistance to targeted protein kinase inhibitors. Nature Reviews Drug Discovery 2004; 3: 1001–1010
  • Griffin J. The biology of signal transduction inhibition: basic science to novel therapies. Seminars in Oncology 2001; 28: 3–8
  • John A M, Thomas N S, Mufti G J, Padua R A. Targeted therapies in myeloid leukemia. Seminars in Cancer Biology 2004; 14: 41–62
  • Deininger M W, Druker B J. Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacology Reviews 2003; 55: 401–423
  • O'Brien S G, Guilhot F, Larson R A, Gathmann I, Baccarani M, Cervantes F, et al. IRIS Investigators. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. New England Journal of Medicine 2003; 348: 994–1004
  • Sievers E L, Larson R A, Stadtmauer E A, Estey E, Lowenberg B, Dombret H, , Mylotarg Study Group, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. Journal of Clinical Oncology 2001; 19: 3244–3254
  • Sievers E L. Native antibody and antibody-targeted chemotherapy for acute myeloid leukemia. Advances in Pharmacology 2004; 51: 169–183
  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648
  • Sutherland H J, Blair A, Zapf R W. Characterization of a hierarchy of human acute myeloid leukemia progenitor cells. Blood 1996; 87: 4754–4761
  • Bonnet D, Dick J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine 1997; 3: 730–737
  • Jordan C T, Upchurch D, Szilvassy S J, Guzman M L, Howard D S, Pettigrew A L, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000; 14: 1777–1784
  • Sutherland H, Blair A, Vercauteren S, Zapf R. Detection and clinical significance of human acute myeloid leukaemia progenitors capable of long-term proliferation in vitro. British Journal of Haematology 2001; 114: 296–306
  • Thanopoulou E, Cashman J, Kakagianne T, Eaves A, Zoumbos N, Eaves C. Engraftment of NOD/SCID-beta2 microglobulin null mice with multilineage neoplastic cells from patients with myelodysplastic syndrome. Blood 2004; 103: 4285–4293
  • Bernstein I D. CD33 as target for selective ablation of acute myeloid leukemia. Clinical Lymphoma 2002; 2: S9–S11
  • Hope K J, Jin L, Dick J E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Natural Immunology 2004; 5: 738–743
  • Sperr W R, Hauswirth A W, Florian S, Ohler L, Geissler K, Valent P. Human leukaemic stem cells: a novel target of therapy. European Journal of Clinical Investigations 2004; 34: 31–40
  • Elrick L J, Jorgensen H G, Mountford J C, Holyoake T L. Punish the parent not the progeny. Blood 2005; 105: 1862–1866
  • Guzman M L, Swiderski C F, Howard D S, Grimes B A, Rossi R M, Szilvassy S J, Jordan C T. Preferential induction of apoptosis for primary human leukemic stem cells. Proceedings of the National Academy of Sciences (USA) 2002; 99: 16220–16225
  • Black J H, McCubrey J A, Willingham M C, Ramage J, Hogge D E, Frankel A E. Diphtheria toxin-interleukin-3 fusion protein (DT(388)IL3) prolongs disease-free survival of leukemic immunocompromised mice. Leukemia 2003; 17: 155–159
  • Xu Q, Simpson S E, Scialla T J, Bagg A, Carroll M. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003; 102: 972–980
  • Bennett J M, Catovsky D, Daniel M T, Flandrin G, Galton D A, Gralnick H R, Sultan C. Proposals for the classification of the acute leukaemias. French–American–British (FAB) co-operative group. British Journal of Haematology 1976; 33: 451–458
  • Bennett J M, Catovsky D, Daniel M T, Flandrin G, Galton D A, Gralnick H R, Sultan C. Proposals for the classification of the myelodysplastic syndromes. British Journal of Haematology 1982; 51: 189–199
  • Bennett J M, Catovsky D, Daniel M T, Flandrin G, Galton D A, Gralnick H R, Sultan C. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French–American–British Cooperative Group. Annals of Internal Medicine 1985; 103: 460–462
  • Bennett J M, Catovsky D, Daniel M T, Flandrin G, Galton D A, Gralnick H R, et al. The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia. Proposals by the French–American–British Cooperative Leukaemia Group. British Journal of Haematology 1994; 87: 746–754
  • Valent P, Horny H-P, Escribano L, Longley J B, Li C Y, Schwartz L B, et al. Diagnostic criteria and classification of mastocytosis: a consensus proposal. Leukemia Research 2001; 25: 603–625
  • Valent P, Horny H-P, Li C Y, Longley J B, Metcalfe D D, Parwaresch R M. Mastocytosis. World Health Organization (WHO) classification of tumours. Pathology & genetics. Tumours of haematopoietic and lymphoid tissues, E S Jaffe, N L Harris, H Stein, J W Vardiman. IARC Press, Lyon 2001; vol 1: 291–302
  • Keeney M, Chin-Yee I, Weir K, Popma J, Nayar R, Sutherland D R. Single platform flow cytometric absolute CD34+ cell counts based on the ISHAGE guidelines. International Society of Hematotherapy and Graft Engineering. Cytometry 1998; 34: 61–70
  • Melzig M F, Bormann H. Betulinic acid inhibits aminopeptidase N activity. Planta Medica 1998; 64: 655–657
  • Blair A, Hogge D E, Ailles L E, Lansdorp P M, Sutherland H J. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 1997; 89: 3104–3112
  • Bühring H J, Simmons P J, Pudney M, Müller R, Jarrossay D, van Agthoven A, Willheim M, et al. The monoclonal antibody 97A6 defines a novel surface antigen expressed on human basophils and their multipotent and unipotent progenitors. Blood 1999; 94: 2343–2356
  • Holyoake T L, Jiang X, Jorgensen H G, Graham S, Alcorn M J, Laird C, et al. Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3. Blood 2001; 97: 720–728
  • Eisterer W, Jiang X, Christ O, Glimm H, Lee K H, Pang E, et al. Different subsets of primary chronic myeloid leukemia stem cells engraft immunodeficient mice and produce a model of the human disease. Leukemia 2005; 19: 435–441
  • Valent P, Besemer J, Sillaber C, Butterfield J H, Eher R, Majdic O, et al. Failure to detect IL-3-binding sites on human mast cells. Journal of Immunology 1990; 145: 3432–3437
  • Agis H, Füreder W, Bankl H C, Kundi M, Sperr W R, Willheim M, et al. Comparative immunophenotypic analysis of human mast cells, blood basophils and monocytes. Immunology 1996; 87: 535–543
  • Ochi H, Hirani W M, Yuan Q, Friend D S, Austen K F, Boyce J A. T helper cell type 2 cytokine-mediated comitogenic responses and CCR3 expression during differentiation of human mast cells in vitro. Journal of Experimental Medicine 1999; 190: 267–280
  • Schernthaner G H, Ghannadan M, Agis H, Jordan J -H, Printz D, Worda C, et al. Phenotypic characterization of human mast cell precursors in serum free culture using antibodies against differentiation- and activation linked cell surface antigens. Allergy 2005, in press.
  • Frankel A E, McCubrey J A, Miller M S, Delatte S, Ramage J, Kiser M, et al. Diphtheria toxin fused to human interleukin-3 is toxic to blasts from patients with myeloid leukemias. Leukemia 2000; 14: 576–585
  • Alexander R L, Ramage J, Kucera G L, Caligiuri M A, Frankel A E. High affinity interleukin-3 receptor expression on blasts from patients with acute myelogenous leukemia (AML) correlates with cytotoxicity of a diphtheria toxin/IL-3 fusion protein. Leukemia Research 2001; 25: 875–881
  • Feuring-Buske M, Frankel A E, Alexander R L, Gerhard B, Hogge D E. A diphtheria toxin-interleukin 3 fusion protein is cytotoxic to primitive acute myeloid leukemia progenitors but spares normal progenitors. Cancer Research 2002; 62: 1730–1736
  • Gadhoum Z, Leibovitch M P, Qi J, Dumenil D, Durand L, Leibovitch S, Smadja-Joffe F. CD44: a new means to inhibit acute myeloid leukemia cell proliferation via p27Kip1. Blood 2004; 103: 1059–1068
  • Gadhoum Z, Delaunay J, Maquarre E, Durand L, Lancereaux V, Qi J, et al. The effect of anti-CD44 monoclonal antibodies on differentiation and proliferation of human acute myeloid leukemia cells. Leukemia & Lymphoma 2004; 45: 1501–1510
  • Feuring-Buske M, Frankel A, Gerhard B, Hogge D. Variable cytotoxicity of diphtheria toxin 388-granulocyte-macrophage colony-stimulating factor fusion protein for acute myelogenous leukemia stem cells. Experimental Hematology 2000; 28: 1390–1400
  • Frankel A E, Powell B L, Hall P D, Case L D, Kreitman R J. Phase I trial of a novel diphtheria toxin/GM-CSF fusion protein (DT388GMCSF) for refractory or relapsed acute myeloid leukemia (AML). Clinical Cancer Research 2002; 8: 1004–1013
  • Hall P D, Virella G, Willoughby T, Atchley D H, Kreitman R J, Frankel A E. Antibody response to DT-GM, a novel fusion toxin consisting of a truncated diphtheria toxin (DT) linked to human granulocyte-macrophage colony stimulating factor (GM), during a phase I trial of patients with relapsed or refractory acute myeloid leukemia. Clinical Immunology 2001; 100: 191–197
  • Sievers E L, Appelbaum F R, Spielberger R T, Forman S J, Flowers D, Smith F O, et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 1999; 93: 3678–3684
  • Matthews D C, Martin P J, Nourigat C, Appelbaum F R, Fisher D R, Bernstein I D. Marrow ablative and immunosuppressive effects of 131I-anti-CD45 antibody in congenic and H2-mismatched murine transplant models. Blood 1999; 93: 737–745

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.