213
Views
40
CrossRef citations to date
0
Altmetric
Review

JAK2 V617F in myeloid disorders: What do we know now, and where are we headed?

&
Pages 177-194 | Received 08 Aug 2005, Published online: 01 Jul 2009

References

  • Tefferi A. The Philadelphia chromosome negative chronic myeloproliferative disorders: a practical overview. Mayo Clin Proc 1998; 73: 1177–1184
  • Kralovics R, Skoda R C. Molecular pathogenesis of Philadelphia chromosome negative myeloproliferative disorders. Blood Rev 2005; 19: 1–13
  • Klippel S, Pahl H L. Molecular markers for the diagnosis of Philadelphia chromosome negative myeloproliferative disorders. Pathol Biol (Paris) 2004; 52: 267–274
  • Haferlach T, Kern W, Schnittger S, Schoch C. Modern diagnostics in chronic myeloproliferative diseases (CMPDs). Ann Hematol 2004; 83(Suppl. 1)S59–S61
  • Krause D S, Van Etten R A. Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005; 353: 172–187
  • Druker B J. Imatinib as a paradigm of targeted therapies. Adv Cancer Res 2004; 91: 1–30
  • Benesch M, Deeg H J. Hematopoietic cell transplantation for adult patients with myelodysplastic syndromes and myeloproliferative disorders. Mayo Clin Proc 2003; 78: 981–990
  • Mittal P, Saliba R M, Giralt S A, Shahjahan M, Cohen A I, Karandish S, et al. Allogeneic transplantation: a therapeutic option for myelofibrosis, chronic myelomonocytic leukemia and Philadelphia-negative/BCR-ABL-negative chronic myelogenous leukemia. Bone Marrow Transplant 2004; 33: 1005–1009
  • Fialkow P J, Gartler S M, Yoshida A. Clonal origin of chronic myelocytic leukemia in man. Proc Natl Acad Sci USA 1967; 58: 1468–1471
  • Fialkow P J, Faguet G B, Jacobson R J, Vaidya K, Murphy S. Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood 1981; 58: 916–919
  • Jacobson R J, Salo A, Fialkow P J. Agnogenic myeloid metaplasia: a clonal proliferation of hematopoietic stem cells with secondary myelofibrosis. Blood 1978; 51: 189–194
  • Barr R D, Fialkow P J. Clonal origin of chronic myelocytic leukemia. N Engl J Med 1973; 289: 307–309
  • Adamson J, Fialkow P, Murphy S, Prchal J, Steinmann L. Polycythemia vera: stem-cell and probable clonal origin of the disease. N Engl J Med 1976; 295: 913–916
  • Harrison C N, Gale R E, Machin S J, Linch D C. A large proportion of patients with a diagnosis of essential thrombocythemia do not have a clonal disorder and may be at lower risk of thrombotic complications. Blood 1999; 93: 417–424
  • Gale R E, Fielding A K, Harrison C N, Linch D C. Acquired skewing of X-chromosome inactivation patterns in myeloid cells of the elderly suggests stochastic clonal loss with age. Br J Haematol 1997; 98: 512–519
  • Tefferi A. Chronic myeloid disorders: Classification and treatment overview. Semin Hematol 2001; 38(1 Suppl. 2)1–4
  • Spivak J L. The chronic myeloproliferative disorders: clonality and clinical heterogeneity. Semin Hematol 2004; 41(2 Suppl. 3)1–5
  • Harrison C N, Campbell P J, Buck G, Wheatley K, East C L, Bareford D, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 2005; 353: 33–45
  • Marchioli R, Finazzi G, Landolfi R, Kutti J, Gisslinger H, Patrono C, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol 2005; 23: 2224–2232
  • Tefferi A, Mesa R A, Nagorney D M, Schroeder G, Silverstein M N. Splenectomy in myelofibrosis with myeloid metaplasia: a single-institution experience with 223 patients. Blood 2000; 95: 2226–2233
  • Cortes J E, Talpaz M, Kantarjian H. Chronic myelogenous leukemia: A review. Am J Med 1996; 100: 555–570
  • Mesa R A, Li C Y, Ketterling R P, Schroeder G S, Knudson R A, Tefferi A. Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood 2005; 105: 973–977
  • Bennett J M, Catovsky D, Daniel M T, Flandrin G, Galton D A, Gralnick H, et al. The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia. Proposals by the French-American-British Cooperative Leukaemia Group. Br J Haematol 1994; 87: 746–754
  • Dameshek W. Some speculations on the myeloproliferative syndromes. Blood 1951; 6: 372–375
  • Nowell P C, Hungerford D A. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 1960; 25: 85–109
  • Rowley J D. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293
  • Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. Structural organization of the bcr gene and its role in the Ph’ translocation. Nature 1985; 315: 758–761
  • Druker B J, Talpaz M, Resta D J, Peng B, Buchdunger E, Ford J M, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037
  • Steensma D P, Dewald G W, Lasho T L, Powell H L, McClure R F, Levine R L, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and the myelodysplastic syndrome. Blood 2005; 106: 1207–1209
  • Jones A V, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005; 106: 2162–2168
  • Vardiman J W, Harris N L, Brunning R D. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002; 100: 2292–2302
  • Furitsu T, Tsujimura T, Tono T, Ikeda H, Kitayama H, Koshimizu U, et al. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest 1993; 92: 1736–1744
  • Cools J, DeAngelo D J, Gotlib J, Stover E H, Legare R D, Cortes J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003; 348: 1201–1214
  • Pardanani A, Ketterling R P, Brockman S R, Flynn H C, Paternoster S F, Shearer B M, et al. CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood 2003; 102: 3093–3096
  • Gotlib J, Cools J, Malone J M, 3rd, Schrier S L, Gilliland D G, Coutre S E. The FIP1L1-PDGFRalpha fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood 2004; 103: 2879–2891
  • Pardanani A, Elliott M, Reeder T, Li C Y, Baxter E J, Cross N C, et al. Imatinib for systemic mast-cell disease. Lancet 2003; 362: 535–536
  • Apperley J F, Gardembas M, Melo J V, Russell-Jones R, Bain B J, Baxter E J, et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 2002; 347: 481–487
  • Golub T R, Barker G F, Lovett M, Gilliland D G. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77: 307–316
  • Macdonald D, Reiter A, Cross N C. The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol 2002; 107: 101–107
  • Xiao S, Nalabolu S R, Aster J C, Ma J, Abruzzo L, Jaffe E S, et al. FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat Genet 1998; 18: 84–87
  • Tartaglia M, Niemeyer C M, Fragale A, Song X, Buechner J, Jung A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003; 34: 148–150
  • Emanuel P D. Juvenile myelomonocytic leukemia. Curr Hematol Rep 2004; 3: 203–209
  • de la Chapelle A, Traskelin A L, Juvonen E. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci USA 1993; 90: 4495–4499
  • Longmore G D. Erythropoietin receptor mutations and Olympic glory. Nat Genet 1993; 4: 108–110
  • Kralovics R, Indrak K, Stopka T, Berman B W, Prchal J F, Prchal J T. Two new EPO receptor mutations: truncated EPO receptors are most frequently associated with primary familial and congenital polycythemias. Blood 1997; 90: 2057–2061
  • Pastore Y D, Jelinek J, Ang S, Guan Y, Liu E, Jedlickova K, et al. Mutations in the VHL gene in sporadic apparently congenital polycythemia. Blood 2003; 101: 1591–1595
  • Ang S O, Chen H, Hirota K, Gordeuk V R, Jelinek J, Guan Y, et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet 2002; 32: 614–621
  • Moliterno A R, Williams D M, Gutierrez-Alamillo L I, Salvatori R, Ingersoll R G, Spivak J L. Mpl Baltimore: a thrombopoietin receptor polymorphism associated with thrombocytosis. Proc Natl Acad Sci USA 2004; 101: 11444–11447
  • Cazzola M, Skoda R C. Translational pathophysiology: a novel molecular mechanism of human disease. Blood 2000; 95: 3280–3288
  • Ding J, Komatsu H, Wakita A, Kato-Uranishi M, Ito M, Satoh A, et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood 2004; 103: 4198–4200
  • Ghilardi N, Skoda R C. A single-base deletion in the thrombopoietin (TPO) gene causes familial essential thrombocythemia through a mechanism of more efficient translation of TPO mRNA. Blood 1999; 94: 1480–1482
  • Kondo T, Okabe M, Sanada M, Kurosawa M, Suzuki S, Kobayashi M, et al. Familial essential thrombocythemia associated with one-base deletion in the 5′-untranslated region of the thrombopoietin gene. Blood 1998; 92: 1091–1096
  • Harrison C N, Gale R E, Wiestner A C, Skoda R C, Linch D C. The activating splice mutation in intron 3 of the thrombopoietin gene is not found in patients with non-familial essential thrombocythaemia. Br J Haematol 1998; 102: 1341–1343
  • Temerinac S, Klippel S, Strunck E, Roder S, Lubbert M, Lange W, et al. Cloning of PRV-1, a novel member of the uPAR receptor superfamily, which is overexpressed in polycythemia rubra vera. Blood 2000; 95: 2569–2576
  • Spivak J L, Barosi G, Tognoni G, Barbui T, Finazzi G, Marchioli R, et al. Chronic myeloproliferative disorders. Hematology (Am Soc Hematol Educ Program) 2003; 200–224
  • Sirhan S, Lasho T L, Elliott M A, Tefferi A. Neutrophil polycythemia rubra vera-1 expression in classic and atypical myeloproliferative disorders and laboratory correlates. Haematologica 2005; 90: 406–408
  • Steensma D P. Enough already of the word “robust”!. Blood 2004; 103: 746–747
  • Yoon S Y, Li C Y, Tefferi A. Megakaryocyte c-Mpl expression in chronic myeloproliferative disorders and the myelodysplastic syndrome: immunoperoxidase staining patterns and clinical correlates. Eur J Haematol 2000; 65: 170–174
  • Harrison C N, Gale R E, Pezella F, Mire-Sluis A, MacHin S J, Linch D C. Platelet c-mpl expression is dysregulated in patients with essential thrombocythaemia but this is not of diagnostic value. Br J Haematol 1999; 107: 139–147
  • Kralovics R, Buser A S, Teo S S, Coers J, Tichelli A, van der Maas A P, et al. Comparison of molecular markers in a cohort of patients with chronic myeloproliferative disorders. Blood 2003; 102: 1869–1871
  • Florena A M, Tripodo C, Iannitto E, Porcasi R, Ingrao S, Franco V. Value of bone marrow biopsy in the diagnosis of essential thrombocythemia. Haematologica 2004; 89: 911–919
  • Michiels J J. Bone marrow histopathology and biological markers as specific clues to the differential diagnosis of essential thrombocythemia, polycythemia vera and prefibrotic or fibrotic agnogenic myeloid metaplasia. Hematol J 2004; 5: 93–102
  • Steensma D P, Tefferi A. Cytogenetic and molecular genetic aspects of essential thrombocythemia. Acta Haematol 2002; 108: 55–65
  • Tefferi A, Mesa R A, Schroeder G, Hanson C A, Li C Y, Dewald G W. Cytogenetic findings and their clinical relevance in myelofibrosis with myeloid metaplasia. Br J Haematol 2001; 113: 763–771
  • Andrieux J L, Demory J L. Karyotype and molecular cytogenetic studies in polycythemia vera. Curr Hematol Rep 2005; 4: 224–229
  • Dingli D, Grand F H, Mahaffey V, Spurbeck J, Ross F M, Watmore A E, et al. Der(6)t(1;6)(q21-23;p21.3): a specific cytogenetic abnormality in myelofibrosis with myeloid metaplasia. Br J Haematol 2005; 130: 229–232
  • Bench A J, Nacheva E P, Champion K M, Green A R. Molecular genetics and cytogenetics of myeloproliferative disorders. Baillieres Clin Haematol 1998; 11: 819–848
  • Baxter E J, Scott L M, Campbell P J, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. The Lancet 2005; 365: 1054–1061
  • Kralovics R, Guan Y, Prchal J T. Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol 2002; 30: 229–236
  • Reeder T L, Bailey R J, Dewald G W, Tefferi A. Both B and T lymphocytes may be clonally involved in myelofibrosis with myeloid metaplasia. Blood 2003; 101: 1981–1983
  • Newton C R, Graham A, Heptinstall L E, Powell S J, Summers C, Kalsheker N, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 1989; 17: 2503–2516
  • Levine R L, Wadleigh M, Cools J, Ebert B L, Wernig G, Huntly B JP, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397
  • D'Andrea A D, Yoshimura A, Youssoufian H, Zon L I, Koo J W, Lodish H F. The cytoplasmic region of the erythropoietin receptor contains nonoverlapping positive and negative growth-regulatory domains. Mol Cell Biol 1991; 11: 1980–1987
  • Thompson J E, Cubbon R M, Cummings R T, Wicker L S, Frankshun R, Cunningham B R, et al. Photochemical preparation of a pyridone containing tetracycle: a Jak protein kinase inhibitor. Bioorg Med Chem Lett 2002; 12: 1219–1223
  • James C, Ugo V, Le Couedic J -P, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148
  • Ugo V, Marzac C, Teyssandier I, Larbret F, Lecluse Y, Debili N, et al. Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 2004; 32: 179–187
  • Kohlhuber F, Rogers N C, Watling D, Feng J, Guschin D, Briscoe J, et al. A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses. Mol Cell Biol 1997; 17: 695–706
  • Kralovics R, Passamonti F, Buser A S, Teo S -S, Tiedt R, Passweg J R, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790
  • Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz S B, et al. Identification of an acquired JAK2 mutation in Polycythemia vera. J Biol Chem 2005; 280: 22788–22792
  • Parganas E, Wang D, Stravopodis D, Topham D J, Marine J -C, Teglund S, et al. Jak2 essential for signaling through a variety of cytokine receptors. Cell 1998; 93: 385–395
  • Rawlings J, Rosler K M, Harrison D A. The JAK/STAT signaling pathway. J Cell Sci 2004; 117: 1281–1283
  • O'Shea J J, Gadina M, Schreiber R D. Cytokine signaling in 2002: New surprises in the Jak/Stat pathway. Cell 2002; 109(2 Suppl. 1)S121–S131
  • Yamaoka K, Saharinen P, Pesu M, Holt V E, 3rd, Silvennoinen O, O'Shea J J. The Janus kinases (Jaks). Genome Biol 2004; 5: 253
  • Ihle J N. Cytokine receptor signalling. Nature 1995; 377: 591–594
  • Saharinen P, Takaluoma K, Silvennoinen O. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol 2000; 20: 3387–3395
  • Lindauer K, Loerting T, Liedl K, Kroemer R. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism of autoregulation. Protein Eng 2001; 14: 27–37
  • Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem 2002; 277: 47954–47963
  • Feener E P, Rosario F, Dunn S L, Stancheva Z, Myers M G, Jr. Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling. Mol Cell Biol 2004; 24: 4968–4978
  • Saharinen P, Vihinen M, Silvennoinen O. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol Biol Cell 2003; 14: 1448–1459
  • Chishti A H, Kim A C, Marfatia S M, Lutchman M, Hanspal M, Jindal H, et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 1998; 23: 281–282
  • Richmond T D, Chohan M, Barber D L. Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol 2005; 15: 146–155
  • Huang L J-s, Constantinescu S N, Lodish H F. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell 2001; 8: 1327–1338
  • Livnah O, Stura E A, Middleton S A, Johnson D L, Jolliffe L K, Wilson I A. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 1999; 283: 987–990
  • Yu H, Jove R. The STATs of cancer—new molecular targets come of age. Nat Rev Cancer 2004; 4: 97–105
  • Calo V, Migliavacca M, Bazan V, Macaluso M, Buscemi M, Gebbia N, et al. STAT proteins: from normal control of cellular events to tumorigenesis. J Cell Physiol 2003; 197: 157–168
  • Luo H, Rose P, Barber D, Hanratty W, Lee S, Roberts T, et al. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol Cell Biol 1997; 17: 1562–1571
  • Watowich S S, Mikami A, Busche R A, Xie X, Pharr P N, Longmore G D. Erythropoietin receptors that signal through Stat5 or Stat3 support fetal liver and adult erythropoiesis: lack of specificity of stat signals during red blood cell development. J Interferon Cytokine Res 2000; 20: 1065–1070
  • Luo H, Hanratty W P, Dearolf C R. An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. Embo J 1995; 14: 1412–1420
  • Lacronique V, Boureux A, Valle V D, Poirel H, Quang C T, Mauchauffe M, et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278: 1309–1312
  • Griesinger F, Hennig H, Hillmer F, Podleschny M, Steffens R, Pies A, et al. A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia. Genes Chromosomes Cancer 2005; 44: 329–333
  • Reiter A, Walz C, Watmore A, Schoch C, Blau I, Schlegelberger B, et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res 2005; 65: 2662–2667
  • Peeters P, Raynaud S D, Cools J, Wlodarska I, Grosgeorge J, Philip P, et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 1997; 90: 2535–2540
  • Gouilleux-Gruart V, Debierre-Grockiego F, Gouilleux F, Capiod J C, Claisse J F, Delobel J, et al. Activated Stat related transcription factors in acute leukemia. Leuk Lymphoma 1997; 28: 83–88
  • Spiekermann K, Biethahn S, Wilde S, Hiddemann W, Alves F. Constitutive activation of STAT transcription factors in acute myelogenous leukemia. Eur J Haematol 2001; 67: 63–71
  • Vajo Z, Francomano C A, Wilkin D J. The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocr Rev 2000; 21: 23–39
  • Croizat H, Amato D, McLeod D L, Eskinazi D, Axelrad A A. Differences among myeloproliferative disorders in the behavior of their restricted progenitor cells in culture. Blood 1983; 62: 578–584
  • Dash A B, Williams I R, Kutok J L, Tomasson M H, Anastasiadou E, Lindahl K, et al. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci USA 2002; 99: 7622–7627
  • Socolovsky M, Fallon A E, Wang S, Brugnara C, Lodish H F. Fetal anemia and apoptosis of red cell progenitors in Stat5a‐/‐5b‐/‐ mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 1999; 98: 181–191
  • Silva M, Richard C, Benito A, Sanz C, Olalla I, Fernandez-Luna J L. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N Engl J Med 1998; 338: 564–571
  • Schuler L A, Lu J C, Brockman J L. Prolactin receptor heterogeneity: processing and signalling of the long and short isoforms during development. Biochem Soc Trans 2001; 29: 52–56
  • Dai C, Krantz S B. Increased expression of the INK4a/ARF locus in polycythemia vera. Blood 2001; 97: 3424–3432
  • Schindler C W. Series introduction. JAK-STAT signaling in human disease. J Clin Invest 2002; 109: 1133–1137
  • Macchi P, Villa A, Giliani S, Sacco M G, Frattini A, Porta F, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995; 377: 65–68
  • Kaushansky K. On the molecular origins of the chronic myeloproliferative disorders: it all makes sense. Blood 2005; 105: 4187–4190
  • Spivak J L. Diagnosis of the myeloproliferative disorders: resolving phenotypic mimicry. Semin Hematol 2003; 40(1 Suppl. 1)1–5
  • Tefferi A, Gilliland D G. The JAK2 V617F tyrosine kinase mutation in myeloproliferative disorders: Status report and immediate implications for disease classification and diagnosis. Mayo Clin Proc 2005; 80: 947–958
  • Tefferi A. Diagnosing polycythemia vera: a paradigm shift. Mayo Clin Proc 1999; 74: 159–162
  • Spivak J L. Polycythemia vera: myths, mechanisms, and management. Blood 2002; 100: 4272–4290
  • Tefferi A. The rise and fall of red cell mass measurement in polycythemia vera. Curr Hematol Rep 2005; 4: 213–217
  • Sirhan S, Fairbanks V F, Tefferi A. Red cell mass and plasma volume measurements in polycythemia. Cancer 2005; 104: 213–215
  • Gordeuk V R, Stockton D W, Prchal J T. Congenital polycythemias/erythrocytoses. Haematologica 2005; 90: 109–116
  • Messinezy M, Westwood N B, El-Hemaidi I, Marsden J T, Sherwood R S, Pearson T C. Serum erythropoietin values in erythrocytoses and in primary thrombocythaemia. Br J Haematol 2002; 117: 47–53
  • Mossuz P, Girodon F, Donnard M, Latger-Cannard V, Dobo I, Boiret N, et al. Diagnostic value of serum erythropoietin level in patients with absolute erythrocytosis. Haematologica 2004; 89: 1194–1198
  • Levy V G, Ruskone A, Baillou C, Theirman-Duffaud D, Najman A, Boffa G A. Polycythemia and the Budd-Chiari syndrome: study of serum erythropoietin and bone marrow erythroid progenitors. Hepatology 1985; 5: 858–861
  • Prchal J T. Pathogenetic mechanisms of polycythemia vera and congenital polycythemic disorders. Semin Hematol 2001; 38(1 Suppl. 2)10–20
  • Diez-Martin J L, Graham D L, Petitt R M, Dewald G W. Chromosome studies in 104 patients with polycythemia vera. Mayo Clin Proc 1991; 66: 287–299
  • Harrison C N. Essential thrombocythaemia: challenges and evidence-based management. Br J Haematol 2005; 130: 153–165
  • Luo C, Laaja P. Inhibitors of JAKs/STATs and the kinases: a possible new cluster of drugs. Drug Discov Today 2004; 9: 268–275
  • De Vos J, Jourdan M, Tarte K, Jasmin C, Klein B. JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells. Br J Haematol 2000; 109: 823–828
  • van den Akker E, van Dijk T B, Schmidt U, Felida L, Beug H, Lowenberg B, et al. The Btk inhibitor LFM-A13 is a potent inhibitor of Jak2 kinase activity. Biol Chem 2004; 385: 409–413
  • Sandberg E M, Ma X, He K, Frank S J, Ostrov D A, Sayeski P P. Identification of 1,2,3,4,5,6-hexabromocyclohexane as a small molecule inhibitor of jak2 tyrosine kinase autophosphorylation [correction of autophophorylation]. J Med Chem 2005; 48: 2526–2533
  • Ridell B, Carneskog J, Wedel H, Vilen L, Hogh Dufva I, Mellqvist U H, et al. Incidence of chronic myeloproliferative disorders in the city of Goteborg, Sweden 1983 – 1992. Eur J Haematol 2000; 65: 267–271
  • Mesa R A, Silverstein M N, Jacobsen S J, Wollan P C, Tefferi A. Population-based incidence and survival figures in essential thrombocythemia and agnogenic myeloid metaplasia: an Olmsted County Study, 1976 – 1995. Am J Hematol 1999; 61: 10–15
  • Schwaller J, Parganas E, Wang D, Cain D, Aster J C, Williams I R, et al. Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol Cell 2000; 6: 693–704
  • Walrafen P, Verdier F, Kadri Z, Chretien S, Lacombe C, Mayeux P. Both proteasomes and lysosomes degrade the activated erythropoietin receptor. Blood 2005; 105: 600–608
  • Verdier F, Walrafen P, Hubert N, Chretien S, Gisselbrecht S, Lacombe C, et al. Proteasomes regulate the duration of erythropoietin receptor activation by controlling down-regulation of cell surface receptors. J Biol Chem 2000; 275: 18375–18381
  • Montoye T, Lemmens I, Catteeuw D, Eyckerman S, Tavernier J. A systematic scan of interactions with tyrosine motifs in the erythropoietin receptor using a mammalian 2-hybrid approach. Blood 2005; 105: 4264–4271
  • Tsui H W, Siminovitch K A, de Souza L, Tsui F W. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat Genet 1993; 4: 124–129
  • Melzner I, Bucur A J, Bruderlein S, Dorsch K, Hasel C, Barth T F, et al. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood 2005; 105: 2535–2542
  • Frantsve J, Schwaller J, Sternberg D W, Kutok J, Gilliland D G. Socs-1 inhibits TEL-JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Mol Cell Biol 2001; 21: 3547–3557
  • Niwa Y, Kanda H, Shikauchi Y, Saiura A, Matsubara K, Kitagawa T, et al. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene 2005; 24: 6406–6417
  • Esteller M. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol 2003; 109: 80–88
  • Oshimo Y, Kuraoka K, Nakayama H, Kitadai Y, Yoshida K, Chayama K, et al. Epigenetic inactivation of SOCS-1 by CpG island hypermethylation in human gastric carcinoma. Int J Cancer 2004; 112: 1003–1009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.