205
Views
26
CrossRef citations to date
0
Altmetric
Original

Over-expression of angiotensin-converting enzyme (CD 143) on leukemic blasts as a clue for the activated local bone marrow RAS in AML

, MD, , , , , , , , & show all
Pages 891-896 | Accepted 24 Apr 2005, Published online: 01 Jul 2009

References

  • Haznedaroglu I C, Tuncer S, Gursoy M. A local renin-angiotensin system in the bone marrow. Medical Hypotheses 1996; 46: 507–510
  • Haznedaroglu I C. A local renin-angiotensin system in the bone marrow still awaits its Christopher Columbus. Experimental Hematology 1998; 26: 279
  • Boranic M. While waiting for Christopher Columbus to discover alternative route(s) of bone marrow regulation, keep faith the body is a global system. Experimental Hematology 1998; 26: 1018–1019
  • Vasku A, Holla L, Znojil V. The best model of a cat is a cat, especially the same cat. Experimental Hematology 1999; 27: 187–188
  • Haznedaroglu I C. A local renin-angiotensin system in the bone marrow: hypothesis and clues. Experimental Hematology 1999; 27: 186–187
  • Haznedaroglu I C, Ozturk M A. Towards the understanding of the local hematopoietic bone marrow renin-angiotensin system. International Journal of Biochemical Cell Biology 2003; 35: 867–880
  • Strawn W B, Richmond R S, Ann T E, Gallagher P E, Ferrario C M. Renin-angiotensin system expression in rat bone marrow haematopoietic and stromal cells. British Journal of Haematology 2004; 126: 120–126
  • Rodgers K E, Xiong S, Steer R, diZerega G S. Effect of angiotensin II on hematopoietic progenitor cell proliferation. Stem Cells 2000; 18: 287–294
  • Brunet dlG, Ivanovic Z, Leprivey-Lorgeot V, Praloran V. Angiotensin II that reduces the colony-forming ability of hematopoietic progenitors in serum free medium has an inverse effect in serum-supplemented medium. Stem Cells 2002; 20: 269–271
  • Peng C, Li W M, Ma Y P, Hu Z B, Cheng F J, Liu L B. Effect of angiotensin II on cord blood CD34(+) cells expansion in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2003; 11: 227–229
  • Goker H, Haznedaroglu I C, Beyazit Y, Aksu S, Tuncer S, Misirlioglu M. Local umbilical cord blood renin-angiotensin system. Annals of Hematology 2005; 84: 277–281
  • Richmond R S, Tallant E A, Gallagher P E, Ferrario C M, Strawn W B. Angiotensin II stimulates arachidonic acid release from bone marrow stromal cells. Journal of Renin & Angiotensin Aldosterone Systems 2004; 5: 176–182
  • Abali H, Haznedaroglu I C, Goker H, Celik I, Ozatli D, Koray Z, et al. Circulating and local bone marrow renin-angiotensin system in leukemic hematopoiesis: preliminary evidences. Hematology 2002; 7: 75–82
  • Wulf G G, Jahns-Streubel G, Nobiling R, Strutz F, Hemmerlein B, Hiddemann W, et al. Renin in acute myeloid leukaemia blasts. British Journal of Haematology 1998; 100: 335–337
  • Wulf G G, Jahns-Streubel G, Strutz F, Basenau D, Hufner M, Buske C. Paraneoplastic hypokalemia in acute myeloid leukemia: a case of renin activity in AML blast cells. Annals of Hematology 1996; 73: 139–141
  • Teresa Gomez Casares M, de la Igesia S, Perera M, Lemes A, Campo C, Gonzalez San Miguel J D. Renin expression in hematological malignancies and its role in the regulation of hematopoiesis. Leukemia & Lymphoma 2002; 43: 2377–2381
  • Pinto R P, Wang K K, Khoury H, Schimmer A D, Minden M D. Aberrant expression of angiotensin in acute myeloid leukemia. Blood 2004; 102: 2124A
  • Montgomery H, Humphries S E, Leung P S. Renin-angiotensin systems: the new frontier. The International Journal of Biochemistry & Cell Biology 2003; 35: 758
  • Abali H, Gullu I H, Engin H, Haznedaroglu I C, Erman M, Tekuzman G. Old antihypertensives as novel antineoplastics: angiotensin-I-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists. Medical Hypotheses 2002; 59: 344–348
  • Ozturk M A, Guven G S, Haznedaroglu I C. How hematopoietic stem cells know and act in cardiac microenvironment for stem cell plasticity? Impact of local renin-angiotensin systems. Medical Hypotheses 2004; 63: 866–874
  • Danilov S M, Sadovnikova E, Scharenborg N, Balyasnikova I V, Svinareva D A, Semikina E L, et al. Angiotensin-converting enzyme (CD143) is abundantly expressed by dendritic cells and discriminates human monocyte-derived dendritic cells from acute myeloid leukemia-derived dendritic cells. Experimental Hematology 2003; 31: 1301–1309
  • Hajek D, Tomiska M, Krahulcova E, Druckmuller M, Florianova M, Izakovicova-Holla L, et al. I/D ACE gene polymorphism in survival of leukemia patients—hypothesis and pilot study. Medical Hypotheses 2003; 61: 80–85
  • Rodgers K E, Xiong S, Steer R, diZerega G S. Effect of angiotensin II on hematopoietic progenitor cell proliferation. Stem Cells 2000; 18: 287–294
  • Haznedaroglu I, Tokgozoglu L, Caglar M, Kes S. Local cardiac renin-angiotensin system and hypertensive heart disease. Hypertension 1994; 24: 816–818
  • Haznedaroglu I C. Angiotensin I-converting enzyme, blood groups, and a local marrow-specific renin-angiotensin system. Experimental Hematology 1997; 25: 93
  • Cobankara V, Ozturk M A, Kiraz S, Ertenli I, Haznedaroglu I C, Pay S, et al. Renin and angiotensin-converting enzyme (ACE) as active components of the local synovial renin-angiotensin system in rheumatoid arthritis. Rheumatology International 2005; 25: 285–291
  • Nobuhiko A, Suganuma E, Babaev V R, Fogo A, Swift L L, Linton M F, et al. Angiotensin II amplifies macrophage-driven atherosclerosis. Arteriosclerosis & Thrombosis Vascular Biology 2004; 24: 2143–2148
  • Ishibashi M, Egashira K, Zhao Q, Hiasa K, Ohtani K, Ihara Y, et al. Bone marrow-derived monocyte chemoattractant protein-1 receptor CCR2 is critical in angiotensin II-induced acceleration of atherosclerosis and aneurysm formation in hypercholesterolemic mice. Arteriosclerosis & Thrombosis Vascular Biology 2004; 24: e174–e178
  • Charrier S, Michaud A, Badaoui S, Giroux S, Ezan E, Sainteny F, et al. Inhibition of angiotensin I-converting enzyme induces radioprotection by preserving murine hematopoietic short-term reconstituting cells. Blood 2004; 104: 978–985
  • Haznedaroglu I C, Arici M, Buyukasik Y. A unifying hypothesis for the renin-angiotensin system and hematopoiesis: sticking the pieces together with the JAK-STAT pathway. Medical Hypotheses 2000; 54: 80–83
  • Rodgers K E, Xiong S, diZerega G S. Accelerated recovery from irradiation injury by angiotensin peptides. Cancer Chemotherapy & Pharmacology 2002; 49: 403–411
  • Ellefson D D, diZerega G S, Espinoza T, Roda N, Maldonado S, Rodgers K E. Synergistic effects of co-administration of angiotensin 1–7 and Neupogen on hematopoietic recovery in mice. Cancer Chemotherapy & Pharmacology 2004; 53: 15–24
  • Haznedaroglu I C. Postrenal transplant erythrocytosis, ACE inhibitors and a hypothetical local renin-angiotensin system in the bone marrow. Clinical Nephrology 1997; 48: 60
  • Haznedaroglu I C, Buyukasik Y. Current evidence for the existence of a local renin-angiotensin system affecting physiological and pathological haemopoiesis in the bone marrow. British Journal of Haematology 1997; 99: 471
  • Leung P S. The peptide hormone angiotensin II: its new functions in tissues and organs. Current Protein Peptide Science 2004; 5: 267–273
  • Defard M, Lemoine F M, Bonnet M L, Baillou C, Isnard F, Najman A, et al. Comparison of the effects of AcSDKP, thymosin beta4, macrophage inflammatory protein 1alpha and transforming growth factor beta on human leukemic cells. Leukemia & Lymphoma 1997; 27: 487–494
  • Wdzieczak-Bakala J, Grillon C, Robinson S, Riches A, Carde P, Lenfant M. Catabolism of the tetrapeptide N-Ac-Ser-Asp-Lys-Pro (AcSDKP), an inhibitor of hematopoietic stem cell (CFU-S) proliferation, following in vitro incubation with hematopoietic tissues from normal and leukemic mice. Bulletin of Cancer 1993; 80: 391–396
  • Comte L, Lorgeot V, Bignon J, Volkov L, Dupuis F, Wdzieczak-Bakala J, et al. In vivo modifications of AcSDKP metabolism and haematopoiesis in mice treated with 5-fluorouracil and Goralatide. European Journal of Clinical Investigations 1998; 28: 856–863
  • Chisi J E, Briscoe C V, Ezan E, Genet R, Riches A C, Wdzieczak-Bakala J. Captopril inhibits in vitro and in vivo the proliferation of primitive haematopoietic cells induced into cell cycle by cytotoxic drug administration or irradiation but has no effect on myeloid leukaemia cell proliferation. British Journal of Haematology 2000; 109: 563–570
  • Chisi J E, Wdzieczak-Bakala J, Thierry J, Briscoe C V, Riches A C. Captopril inhibits the proliferation of hematopoietic stem and progenitor cells in murine long-term bone marrow cultures. Stem Cells 1999; 17: 339–344
  • Wierenga P K, Konings A W. Goralatide (AcSDKP) selectively protects murine hematopoietic progenitors and stem cells against hyperthermic damage. Experimental Hematology 1996; 24: 246–252
  • Wierenga P K, Konings A W. Seraspenide (AcSDKP) mediated protection of hematopoietic stem cells in a hyperthermic purging protocol. Progress in Clinical Biology Research 1994; 389: 189–195
  • Najman A, Bonnet D, Isnard F, Lemoine F, Guigon M. [Effects of the tetrapeptide AcSDKP on normal and leukemic bone marrow]. Nouvelle Revue Française D'hematologie 1993; 35: 279–280
  • Liozon E, Pradelles P, Venot J, Rigaud M, Cransac M, Bordessoule D, et al. Serum levels of a negative regulator of cell proliferation (AcSDKP) are increased in certain human haemopathies. Leukemia 1993; 7: 808–812
  • Bonnet D, Cesaire R, Lemoine F, Aoudjhane M, Najman A, Guigon M. The tetrapeptide AcSDKP, an inhibitor of the cell-cycle status for normal human hematopoietic progenitors, has no effect on leukemic cells. Experimental Hematology 1992; 20: 251–255
  • Wierenga P K, Setroikromo R, Vellenga E, Kampinga H H. Purging of acute myeloid leukaemia cells from stem cell grafts by hyperthermia: enhancement of the therapeutic index by the tetrapeptide AcSDKP and the alkyl-lysophospholipid ET-18-OCH(3). British Journal of Haematology 2000; 111: 1145–1152
  • Liozon E, Volkov L, Comte L, Trimoreau F, Pradelles P, Bordessoule D. AcSDKP serum concentrations vary during chemotherapy in patients with acute myeloid leukaemia. British Journal of Haematology 1995; 89: 917–920
  • Caires A C, Oliveira C R, Smith M C, Hemerly J P, Juliano M A, Bincoletto C. Effects of palladacycle complex on hematopoietic progenitor cells proliferation in vivo and in vitro and its relation with the inhibitory properties of this compound on the angiotensin-I converting enzyme activity. Immunopharmacology & Immunotoxicology 2004; 26: 487–500
  • Bonnet D. Normal and leukaemic stem cells. British Journal of Haematology 2005; 130: 469–479
  • Wang J Y, Baltimore D. Localization of tyrosine kinase-coding region in v-abl oncogene by the expression of v-abl-encoded proteins in bacteria. Journal of Biological Chemistry 1985; 260: 64–71
  • Ernould A P, Ferry G, Barret J M, Genton A, Boutin J A. Purification and characterization of the major tyrosine protein kinase from the human promyelocytic cell line, HL60. European Journal of Biochemistry 1993; 214: 503–514
  • Rocken C, Lendeckel U, Dierkes J, Westphal S, Carl-McGrath S, Peters B. The number of lymph node metastases in gastric cancer correlates with the angiotensin I-converting enzyme gene insertion/deletion polymorphism. Clinical Cancer Research 2005; 11: 2526–2530

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.