153
Views
14
CrossRef citations to date
0
Altmetric
Review

New molecular markers in resistant B-CLL

, , &
Pages 791-801 | Accepted 23 Nov 2005, Published online: 01 Jul 2009

References

  • Dighiero G, Binet J -L. When and how to treat chronic lymphocytic leukemia. New England Journal of Medicine 2000; 343: 1799–1801
  • Chiorazzi N, Rai K R, Ferrarini M. Chronic lymphocytic leukemia. New England Journal of Medicine 2005; 352: 804–815
  • Montillo M, Hamblin T, Hallek M, Montserrat E, Morra E. Chronic lymphocytic leukemia: novel prognostic factors and their relevance for risk-adapted therapeutic strategies. Haematologica 2005; 90: 391–399
  • Tobin G, Thunberg U, Johnson A, Thorn I, Soderberg O, Hultdin M, et al. Somatically mutated IgV(H)3-21 genes characterize a new subset of chronic lymphocytic leukemia. Blood 2002; 99: 2262–2264
  • Krober A, Seiler T, Benner A, Bullinger L, Bruckle E, Lichter P, et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 2002; 100: 1410–1416
  • Sarsotti E, Marugan I, Benet I, Terol M J, Sanchez-Izquierdo D, Tormo M, et al. Bcl-6 mutation status provides clinically valuable information in early-stage B-cell chronic lymphocytic leukemia. Leukemia 2004; 18: 743–746
  • Heintel D, Kroemer E, Kienle D, Schwarzinger I, Gleiss A, Schwarzmeier J, et al. High expression of activation-induced cytidine deaminase(AID) mRNA is associated with unmutated IgVH gene status and unfavorable cytogenetic aberrations in patients with chronic lymphocytic leukemia. Leukemia 2004; 18: 756–762
  • Albesiano E, Messmer B T, Damle R N, Allen S L, Rai K R, Chiorazzi N. Activation-induced cytidine deaminase in chronic lymphocytic leukemia B cells: expression as multiple forms in a dynamic, variably sized fraction of the clone. Blood 2003; 102: 3333–3339
  • Oppezzo P, Vuiller F, Vasconcelos Y, Dumas G, Magnac C, Payelle-Brogard B, et al. Chronic lymphocytic leukemia B cells expressing AID display dissociation between class switch recombination and somatic hypermutations. Blood 2003; 101: 4029–4032
  • Damle R N, Wasil T, Fais F, Ghiotto F, Valetto A, Allen S L, et al. IgV gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847
  • Hamblin T J, Orchard J A, Ibbotson R E, Davis Z, Thomas P W, Stevenson F K, Oscier D G. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia but CD38 expression may vary during the course of the disease. Blood 2002; 99: 1023–1029
  • Orchard J A, Ibbotson R E, Davis Z, Weistner A, Rosenwald A, Thomas P W, et al. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. The Lancet 2004; 363: 105–111
  • Nolz J C, Tschumper R C, Pittner B T, Darce J R, Kay N E, Jelinek D F. ZAP-70 is expressed by a subset of normal human B-lymphocytes displaying an activated phenotype. Leukemia 2005; 19: 1018–1024
  • Heintel D, Kienle D, Shehata M, Krober A, Kroemer E, Schwarzinger I, et al. High expression of lipoprotein lipase in poor risk B-cell chronic lymphocytic leukemia. Leukemia 2005; 19: 1216–1223
  • Oppezzo P, Vasconcelos Y, Settegrana C, Jeannel D, Vuillier F, Legarff-Tavernier M, et al. The LPL/ADAM29 expression ratio is a novel prognosis indicator in chronic lymphocytic leukemia. Blood 2005; 106: 650–657
  • Stilgenbauer S, Döhner H. Molecular genetics and its clinical relevance. Hematology & Oncology Clinics of North America 2004; 18: 827–848
  • Hanada M, Delia D, Aiello A, Stadtmauer E, Reed J C. Bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 1993; 82: 1820–1828
  • Khaled A R, Durum S K. Lymphocyde: cytokines and the control of lymphoid homeostasis. Nature Reviews in Immunology 2002; 2: 817–830
  • Kitada S, Andersen J, Akar S, Zapata J M, Takayama S, Krajewski S, et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 1998; 91: 3379–3389
  • Chen L, Willis S N, Wei A, Smith B J, Fletcher J I, Hinds M G, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic functions. Molecular Cell 2005; 17: 393–403
  • Willis S N, Chen L, Dewson G, Wie A, Naik E, Fletcher J I, et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-XL, but not Bcl-2, until displaced by BH3-only proteins. Genes & Development 2005; 19: 1294–1305
  • Morales A A, Olson A, Celsing F, Österborg A, Jondal M, Osorio L M. High expression of bfl-1 contributes to the apoptosis resistant phenotype in B-cell chronic lymphocytic leukemia. International Journal of Cancer 2004; 113: 730–737
  • Saintigny Y, Dumay A, Lambert S, Lopez B. A novel role for the Bcl-2 family: specific suppression of the RAD51 recombination pathway. EMBO Journal 2001; 20: 2596–2607
  • Youn C K, Cho H J, Kim S H, Kim H B, Kim M H, Chang I Y, et al. Bcl-2 expression suppresses mismatch repair activity through inhibition of E2F transcriptional activity. Nature Cell Biology 2005; 7: 137–147
  • Dunn-Walters D, Spencer J. Dual role for Bcl-2 in antibody affinity maturation. Nature Cell Biology 2005; 7: 326–327
  • Rada C, Ehrenstein M R, Neuberger M S, Milstein C. Hot spot focusing of somatic hypermutations in MSH2-deficient mice suggests two stages of mutational targeting. Immunity 1998; 9: 134–141
  • Sanz-Vaque L, Colomer D, Bosch F, Lopez-Guillermo A, Dreyling M H, Bosch F, et al. Microsatellite instability analysis in typical and progressed mantle cell lymphoma and B-cell chronic lymphocytic leukaemia. Haematologica 2001; 86: 181–186
  • Volpe G, Gamberi B, Pastore C, Roetto A, Pautasso M, Parvis G, et al. Analysis of microsatellite instability in chronic lymphoproliferative disorders. Annals of Hematology 1996; 72: 67–71
  • Lopez-de la Iglesia A, Calvo J, Sanz-Vaque L, Colomer D, Places L, Garcia-Foncillas J, et al. Genomic instability at the human CD5 gene promoter. Haematologica 2002; 87: 235–241
  • Auer R L, Jones C, Mullenbach R A, Syndercombe-Court D, Milligan D W, Fegan C D, Cotter F E. Role for CCG-trinucleotide repeats in the pathogenesis of chronic lymphocytic leukemia. Blood 2001; 97: 509–515
  • Gartenhaus R, Johns M M, 3rd, Wang P, Rai K, Sidransky D. Mutator phenotype in a subset of chronic lymphocytic leukemia. Blood 1996; 87: 38–41
  • Novak U, Tobler A, Fey M F. Allelotyping in B-cell chronic lymphocytic leukemia (B-CLL). Leukemia & Lymphoma 2004; 45: 887–896
  • Weller S, Braun M C, Tan B K, Rosenwald A, Cordier C, Conley M E, et al. Human blood IgM ‘memory’ B cells are circulating splenic marginal zone B cells harbouring a prediversified immunoglobulin repertoire. Blood 2005; 104: 3647–3654
  • Weill J -C, Reynaud C -A. Do developing B cells need antigen?. Journal of Experimental Medicine 2005; 210: 7–9
  • Martin A, Bardwell P D, Woo C J, Fan M, Shulman M J, Scharff M D. Activation-induced cytidine deaminase turns on somatic hypermutations in hybridomas. Nature 2002; 415: 802–806
  • Zan H, Komori A, Li Z, Cerutti A, Schaffer A, Flajnik M F, et al. The translesion DNA polymerase ζ plays a major role in Ig and blc-6 somatic hypermutations. Immunity 2001; 14: 643–653
  • Delbos F, De Smet A, Faili A, AouFouchi S, Weill J C, Reynaud C A. Contribution of DNA polymerase eta to immunoglobulin hypermutations in mouse. Journal of Experimental Medicine 2005; 201: 1191–1196
  • Roth D B. Restraining the V(D)J recombinase. Nature Reviews in Immunology 2003; 3: 656–666
  • Ma Y, Lu H, Schwarz K, Lieber M R. Repair of double-strand DANN breaks by the human nonhomologous DANN end joining pathway. Cell Cycle 2005; 4: e19–e26, (EPUB ahead of print)
  • Lees-Miller S P, Meek K. Repair of double-strand breaks by non-homologous end joining. Biochimie 2003; 85: 1161–1173
  • Collis S J, DeWeese T, Jeggo P A, Parker A R. The life and death of DNA-PK. Oncogene 2005; 24: 949–961
  • Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Diest F L, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 2001; 105: 177–186
  • Revy P, Buck D, le Deist F, de Villartay J P. The repair of DNA damage/modifications during the maturation of the immune system: lessons from human primary immunodeficiency disorders and animal models. Advances in Immunology 2005; 87: 237–295
  • Wang J, Pluth J M, Cooper P K, Cowan M J, Chen D J, Yannone S M. Artemis deficiency confers a double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression. DNA Repair 2005; 4: 556–570
  • Poinsignon C, de Chasseval R, Soubeyrand S, Moshous D, Fisher A, Hache R J, de Villartay J P. Phosphorylation of Artemis following irradiation-induced DNA damage. European Journal of Immunology 2004; 34: 3146–3155
  • Rooney S, Alt F W, Lombard D, Whitlow S, Eckersdorf M, Fleming J, et al. Defective DNA repair and increased genomic instability in Artemis-deficient murine cells. Journal of Experimental Medicine 2003; 197: 553–565
  • Muller C, Salles B. Regulation of DNA-dependent protein kinase activity in leukemic cells. Oncogene 1997; 15: 2343–2348
  • Panasci L, Paiement J P, Christodoulopoulos G, Belenkov A, Malapetsa A, Aloyz R. Chlorambucil drug resistance in chronic lymphocytic leukemia : the emerging role of DNA repair. Clinical Cancer Research 2001; 7: 454–461
  • Muller C, Christodoupoulos G, Salles B, Panasci L. DNA-dependent protein kinase activity correlates with clinical and in vitro sensitivty of chronic lymphocytic leukemia lymphocytes to nitrogen mustards. Blood 1998; 92: 2213–2219
  • Guipaud O, Deriano L, Salin H, Vallat L, Sabatier L, Merle-Beral H, Delic J. B-cell chronic lymphocytic leukaemia: a polymorphic family unified by genomic features. The Lancet Oncology 2003; 4: 506–514
  • Deriano L, Guipaud O, Merle-Beral H, Binet J -L, Ricoul M, Potocki-Veronese G, et al. Human chronic lymphocytic leukemia B cells can escape DNA damage-induced apoptosis through the nonhomologous end-joining DNA repair pathway. Blood 2005; 105: 4776–4783
  • Blaise R, Alapetite C, Masdehors P, Merle-Beral H, Roulin C, Delic J, Sabatier L. High level of chromosome aberrations correlate with impaired in vitro radiation-induced apoptosis and DNA repair in human B-chronic lymphocytic leukemia cells. International Journal of Radiation Biology 2002; 78: 671–679
  • Deriano L, Merle-Béral H, Guipand O, Sabatier L, Delic J. Mutagenicity of NHEJ DNA repair in a resistant subset of human chronic lymphocytic leukemia B cells. British J Haematol, In press
  • Rosenwald A, Chuang E Y, Davis R E, Wiestner A, Alizadeh A A, Arthur D C, et al. Fludarabine treatment of patients with chronic lymphocytic leukemia induces a p53-dependent gene expression response. Blood 2004; 104: 1428–1434
  • Vallat L, Magdelenat H, Merle-Beral H, Masdehors P, Potocki de Montalk G, Davi F, et al. The resistance of B-CLL cells to DNA damage-induced apoptosis defined by DNA microarrays. Blood 2003; 101: 4598–4606
  • O'Driscoll M, Gennery A R, Seidel J, Concannon P, Jeggo P A. An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair 2004; 3: 1227–1235
  • Difilippantonio M J, Zhu J, Chen H T, Meffre E, Nussenzweig M C, Max E E, et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformations. Nature 2000; 404: 510–514
  • Gao Y, Ferguson D O, Xie W, Manis J P, Sekiguchi J, Frank K M, et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic instability and development. Nature 2000; 404: 897–900
  • Kinzler K W, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 1997; 386: 761–763
  • McGowan C H, Russell P. The DNA damage response: sensing and signalling. Current Opinions in Cell Biology 2004; 16: 629–633
  • Shiloh Y, Andegeko Y, Tsarfaty I. In search of drug treatment for genetic defect in the DNA damage response: the example of ataxia-telangiectasia. Seminars in Cancer Biology 2004; 14: 295–305
  • McKinnon P J. ATM and ataxia telangiectasia. EMBO Reports 2004; 5: 772–776
  • Coutts A S, La Thangue N B. The p53 response: emerging levels of co-factor complexity. Biochemistry & Biophysics Research Communications 2005; 331: 778–785
  • Harris S L, Levine A J. The p53 pathway: positive and negative feedback loops. Oncogene 2005; 24: 2899–2908
  • Gomez-Lazaro M, Fernandez-Gomez F J, Jordan J. p53: Twenty five years understanding the mechanism of genome protection. Journal of Physiology & Biochemistry 2004; 60: 287–307
  • Riballo E, Kühne M, Rief N, Doherty A, Smith G CM, Recio M J, et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to γ-H2AX foci. Molecular Cell 2004; 16: 715–724
  • Starostik P, Manshouri T, O'Brien S, Freireich E, Kantarjian H, Haidar M, et al. Deficiency of ATM protein expression defines an aggressive subgroup of B-cell chronic lymphocytic leukemia. Cancer Research 1998; 58: 4552–4557
  • Stankovic T, Weber P, Stewart G, Bedenham T, Murray J, Byrd P J, et al. Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet 1999; 353: 26–29
  • Bulrich F, Rasio D, Kitada S, Starostik P, Kipps T, Keating M, et al. ATM mutations in B-cell chronic lymphocytic leukemia. Cancer Research 1999; 59: 24–27
  • Austen B, Powell J E, Alvi A, Edwards I, Hooper L, Starczynski J, et al. Mutations in the ATM gene lead to impaired overall and treatment-free survival of patients with B-CLL that is independent of IgVH mutation status. Blood 2005; 106: 3175–3182
  • Stankovic T, Hubank M, Cronin D, Stewart G S, Fletcher D, Bignell C R, et al. Microarray analysis reveals that TP53- and ATM-mutant B-CLLs share a defect in activating proapoptotic responses after DNA damage but are distinguished by major differences in activating prosurvival responses. Blood 2004; 103: 291–300
  • Pettitt A R, Sherrington P D, Stewart G, Cawley J C, Taylor A M, Stankovic T. p53 dysfunction in B-cell chronic lymphocytic leukemia: inactivation of ATM as an alternative to TP53 mutation. Blood 2001; 98: 814–822
  • Bromidge T, Lowe C, Prentice A, Johnson S. p53 intronic point mutation, aberrant splicing and telomeric associations in a case of B-chronic lymphocytic leukaemia. British Journal of Haematology 2000; 111: 223–229
  • Masdehors P, Merle-Beral H, Maloum K, Omura S, Magdelenat H, Delic J. Deregulation of the ubiquitin system and p53 proteolysis modify the apoptotic response in B-CLL lymphocytes. Blood 2000; 96: 269–274
  • Delic J, Masdehors P, Ömura S, Cosset J M, Dumont J, Binet J L, Magdelenat H. The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-alpha-initiated apoptosis. British Journal of Cancer 1998; 77: 1103–1107
  • Masdehors P, Ömura S, Merle-Beral H, Mentz F, Cosset J M, Dumont J, et al. Increased sensitivity of CLL-derived lymphocytes to apoptotic death activation by the proteasome-specific inhibitor lactacystin. British Journal of Haematology 1999; 105: 752–757
  • Chen D, Kon N, Li M, Zhang W, Qin J, Gu W. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 2005; 121: 1071–1083
  • Zhong Q, Gao W, Du F, Wang X. Mule/ARF-BP1, a BH3 only E3 ubiquitin ligase catalyses the polyubiquitination of the Mcl-1 and regulates apoptosis. Cell 2005; 121: 1085–1095
  • Kim J H, Park S -M, Kang M R, Oh S -Y, Lee T H, Muller M T, Chung I K. Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes & Development 2005; 19: 776–781
  • Blasco M A. Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. EMBO Journal 2005; 24: 1095–1103
  • Campisi J. Senescent cells, tumor suppression and organismal aging: good citizens, bad neighbors. Cell 2005; 120: 513–522
  • D'Adda di Fagagna F, Teo S -H, Jackson S P. Functional links between telomeres and proteins of the DNA-damage response. Genes & Development 2004; 18: 1781–1799
  • Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. p53- and ATM-dependent apoptosis induced by telomere lacking TRF2. Science 1999; 283: 1321–1324
  • Bradshaw P S, Stavropoulos D J, Meyn M S. Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nature Genetics 2005; 37: 193–197
  • Damle R N, Batliwalla F M, Ghiotto F, Valetto A, Albesiano E, Sison C, et al. Telomere length and telomerase activity delineate distinctive replicative features of the B-CLL subgroups defined by immunoglobulin V gene mutations. Blood 2004; 103: 375–382
  • Grabowski P, Hultdin M, Karlsson K, Tobin G, Aleskog A, Thunberg U, et al. Telomere length as a prognostic parameter in chronic lymphocytic leukemia with special reference to VH gene mutation status. Blood 2005; 105: 4807–4812
  • Tchirkov A, Chaleteix C, Magnac C, Vasconselos Y, Davi F, Michel A, et al. hTERT expression and prognosis in B-chronic lymphocytic leukemia. Annals of Oncology 2004; 15: 1476–1480
  • Bechter O E, Eisterer W, Pall G, Hilbe W, Kuhr T, Thaler J. Telomere length and telomerase activity predict survival in patients with B cell chronic lymphocytic leukemia. Cancer Research 1998; 58: 4918–4922
  • Trentin L, Ballon G, Ometto L, Perin A, Basso U, Chieco-Bianchi L, et al. Telomerase activity in chronic lymphoproliferative disorders of B-cell lineage. British Journal of Haematology 1999; 106: 662–668
  • El-Daly H, Lull M, Zimmermann S, Pantic M, Waller C F, Martens U M. Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532. Blood 2005; 105: 1742–1749
  • Bechter O E, Eisterer W, Dlaska M, Kuhr T, Thaler J. CpG island methylation of the hTERT promoter is associated with lower telomerase activity in B-cell lymphocytic leukemia. Experimental Hematology 2002; 30: 26–33
  • Garcia-Cao M, O'Sullivan R, Peters AH FM, Jenuwein T, Blasco M A. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nature Genetics 2004; 36: 94–99
  • Lund A H, van Lohuizen M. Epigenetics and cancer. Genes & Development 2004; 18: 2315–2335
  • Brown R, Plumb J A. Demethylation of DNA by decitabine in cancer chemotherapy. Expert Reviews in Anticancer Therapy 2004; 4: 501–510
  • Byrd J C, Stilgenbauer S, Flinn I W. Chronic lymphocytic leukemia. Hematology (American Society of Hematology Education Program Book) 2004; 163–183
  • Raval A, Lucas D M, Matkovic J J, Bennet K L, Lyyanarachchi S, Young D C, et al. TWIST2 demonstrates differential methylation in immunoglobulin variable heavy chain mutated and unmutated chronic lymphocytic leukemia. Journal of Clinical Oncology 2005; 23: 3877–3885
  • Lyko F, Stach D, Brenner A, Stilgenbauer S, Döhner H, Wirtz M, et al. Quantitative analysis of DANN methylation in chronic lymphocytic leukemia patients. Electrophoresis 2004; 25: 1530–1535
  • Kn H, Bassal S, Tikellis C, El-Osta A. Expression analysis of the epigenetic methyltransferases and methyl-CpG binding protein families in the normal B-cell and B-cell chronic lymphocytic leukemia (CLL). Cancer Biology & Therapy 2004; 3: 989–994
  • Rush L J, Raval A, Funchain P, Johnson A J, Smith L, Lucas D M, et al. Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets. Cancer Research 2004; 64: 2424–2433
  • Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, Jacob S T. 5-aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Molecular Cell Biology 2005; 25: 4727–4741
  • Yuille M R, Condie A, Stone E M, Wilsher J, Bradshaw P S, Brooks L, Catovsky D. TCL1 is activated by chromosomal rearrangement or by hypomethylation. Genes, Chromosomes & Cancer 2001; 30: 336–341
  • Mabuchi H, Fujii H, Calin G, Alder H, Negrini M, Rassenti L, et al. Cloning and characterization of CLLD6, CLLD7 and CLLD8, novel candidate genes for leukemogenesis at chromosome 13q14, a region commonly deleted in B-cell chronic lymphocytic leukemia. Cancer Research 2001; 61: 2870–2877
  • Aron J L, Parthun M R, Marcucci G, Kitada S, Mone A P, Davis M E, et al. Depsipeptide (FR901228) induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase 8-mediated apoptosis and down-regulation of c-FLIP protein. Blood 2003; 102: 652–658
  • Byrd J C, Marcucci G, Lucas D M, Parthun M R, Xiao J J, Klisovic R B, et al. A phase 1 and pharmacodynamic study of dispeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 2005; 105: 959–967
  • Calin G A, Dumitru C D, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences (USA) 2002; 99: 15524–15529
  • Cimmino A, Calin G A, Fabbri M, Iorio M V, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences (USA) 2005; 102: 13944–13949
  • He L, Hannon G J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews in Genetics 2004; 5: 522–531
  • Matzke M A, Birchler J A. RNAi-mediated pathways in the nucleus. Nature Reviews in Genetics 2005; 6: 24–35
  • He L, Thomson J M, Hemann M T, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833
  • O'Donnell K A, Wentzel E A, Zeller K I, Dang C V, Mendell J T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435: 839–843
  • Calin G A, Liu C G, Sevugnani C, Ferracin M, Felli N, Dumitru C D, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences (USA) 2004; 101: 11755–11760
  • Scielzo C, Ghia P, Conti A, Bachi A, Guida G, Geuna M, et al. HS1 protein is differentially expressed in chronic lymphocytic leukemia patient subset with good or poor prognosis. Journal of Clinical Investigations 2005; 115: 1644–1650
  • Barnidge D R, Jelinek D F, Muddiman D C, Kay N E. Quantitative protein expression analysis of CLL B cells from mutated and unmutated IgV(H) subgroups using acid-cleavable isotope-coded affinity tag reagents. Journal of Proteome Research 2005; 4: 1310–1317
  • Sawada M, Sun W, Hayes P, Leskov K, Bootham D A, Matsuyama S. Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nature Cell Biology 2003; 5: 320–329
  • Cohen H Y, Lavu S, Bitterman K J, Hekking B, Imahiyerobo T A, Miller C, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Molecular Cell 2004; 13: 627–638

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.