49
Views
9
CrossRef citations to date
0
Altmetric
Original

In-vitro functional phenotypes of plasma cell lines from patients with multiple myeloma

, DIMO, , , , &
Pages 1921-1931 | Received 13 Dec 2005, Accepted 14 Feb 2006, Published online: 01 Jul 2009

References

  • Hallek M, Bergsagel P L, Anderson K C. Multiple myeloma: increasing evidence for a multistep transformation process. Blood 1998; 91: 3–21
  • Anderson K C. Multiple myeloma: advances in disease biology. Semin Hematol 2001; 38: 6–10
  • Kyle R A, Rajkumar S V. Multiple myeloma. New Engl J Med 2004; 351: 1860–1873
  • Hata H, Matsuzaki H, Sonoki T, Takemoto S, Kuribayashi N, Nagasaki A, et al. Establishment of a CD45-positive immature plasma cell line from an aggressive multiple myeloma with high serum lactate dehydrogenase. Leukemia 1994; 8: 1768–1773
  • Greipp P R, Leong T, Bennett J M, Gaillard J P, Klein B, Stewart J A, et al. Plasmablastic morphology – an independent prognostic factor with clinical and laboratory correlates: eastern cooperative oncology group (ECOG) myeloma trial E9486 report by the ECOG myeloma laboratory group. Blood 1998; 91: 2501–2507
  • Matsui W H, Huff C A, Wang Q, Malehorn M T, Barber J, Tanhehco Y. Characterization of clonogenic multiple myeloma cells. Blood 2004; 103: 2332–2336
  • Kawano M M, Huang N, Harada H, Harada Y, Sakai A, Tanaka H, et al. Identification of immature and mature myeloma cells in the bone marrow of human myelomas. Blood 1993; 82: 564–573
  • Zhang X G, Gaillard J P, Robillard N, Lu Z Y, Gu Z J, Jourdan M, et al. Reproducible obtaining of human myeloma cell lines as a model for tumor stem cell study in human multiple myeloma. Blood 1994; 83: 3654–3663
  • Sailer M, Vykoupil K F, Peest D, Coldewey R, Deicher H, Georgii A. Prognostic relevance of a histologic classification system applied in bone marrow biopsies from patients with multiple myeloma: a hystopathological evaluation of biopsies from 153 untreated patients. Eur J Haematol 1995; 54: 137–141
  • Greipp P R, Raymond N M, Kyle R A, O'Fallon W M. Multiple myeloma: significance of plasmablastic subtypes in morphological classification. Blood 1985; 65: 305–314
  • Pellat-Deceunynck C, Bataille R. Normal and malignant human plasma cells: proliferation, differentiation, and expansions in relation to CD45 expression. Blood Cells Mol Dis 2004; 32: 293–301
  • Avet-Loiseau H, Facon T, Daviet A, Godon C, Rapp M J, Harousseau J L, et al. 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone du Myelome. Cancer Res 1999; 59: 4546–4550
  • Andersen N F, Standal T, Nielsen J L, Heickendorff L, Borset M, Sorensen F B, et al. Syndecan-1 and angiogenic cytokines in multiple myeloma: correlation with bone marrow angiogenesis and survival. Br J Haematol 2005; 128: 210–217
  • Dring A M, Davies F E, Fenton J A, Roddam P L, Scott K, Gonzalez D, et al. A global expression-based analysis of the consequences of the t(4;14) translocation in myeloma. Clin Cancer Res 2004; 10: 5692–5701
  • Rajkumar S V, Greipp P R. Prognostic factors in multiple myeloma. Hematol Oncol Clin North Am 1999; 13: 1295–1314
  • Jego G, Bataille R, Pellat-Deceunynck C. Interleukin-6 is a growth factor for non-malignant human plasmablasts. Blood 2001; 97: 1817–1822
  • Tarte K, De Vos J, Thykjaer T, Zhan F, Fiol G, Costes V, et al. Generation of polyclonal plasmablasts from peripheral blood B cells: a normal counterpart of malignant plasmablasts. Blood 2002; 100: 1113–1122
  • Kumar S, Rajkumar S V, Greipp P R, Witzig T E. Cell proliferation of myeloma plasma cells: comparison of the blood and marrow compartments. Am J Hematol 2004; 77: 7–11
  • Drexler H G, Matsuo Y, MacLeod R A. Persistent use of false myeloma cell lines. Hum Cell2000 2000; 16: 101–105
  • Terpos E, Politou M, Rahemtulla A. New insights into the pathophysiology and management of bone disease in multiple myeloma. Br J Haematol 2003; 123: 758–769
  • Vaananen H K, Zhao H, Mulari M, Hallen J M. The cell biology of osteoclast function. J Cell Sci 2000; 113: 377–381
  • Farrugia A N, Atkins G J, To L B, Pan B, Horvath N, Kostakis P, et al. Receptor activator of nuclear factor-kappa B ligand expression by human myeloma cells mediates osteoclast formation in vitro and correlates with bone destruction in vivo. Cancer Res 2003; 63: 5438–5445
  • Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 2001; 98: 3527–3533
  • Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349: 2483–2494
  • The International Myeloma Working Group: Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 2003; 121: 749–757
  • Silvestris F, Cafforio P, Tucci M, Dammacco F. Negative regulation of erythroblast maturation by Fas-L( + )/TRAIL( + ) highly malignant plasma cells: a major pathogenetic mechanism of anemia in multiple myeloma. Blood 2002; 99: 1305–1313
  • Silvestris F, Cafforio P, Calvani N, Dammacco F. Impaired osteoblastogenesis in myeloma bone disease: role of upregulated apoptosis by cytokines and malignant plasma cells. Br J Haematol 2004; 126: 475–486
  • Silvestris F, Tucci M, Cafforio P, Dammacco F. Fas-L up-regulation by highly malignant myeloma plasma cells: role in the pathogenesis of anemia and disease progression. Blood 2001; 97: 1155–1164
  • Silvestris F, Cafforio P, Tucci M, Grinello D, Dammacco F. Upregulation of osteoblast apoptosis by malignant plasma cells: a role in myeloma bone disease. Br J Haematol 2003; 122: 39–52
  • Puchtler H, Meloan S N. Demonstration of phosphates in calcium deposits: a modification of von Kossa's reaction. Histochemistry 1978; 56: 177–185
  • Walsh C A, Beresford J N, Birch M A, Boothroyd B, Gallagher J A. Application of reflected light microscopy to identify and quantitate resorption by isolated osteoclasts. J Bone Miner Res 1991; 6: 661–671
  • Calvani N, Dammacco F, Cafforio P, Silvestris F. Functional osteoclast-like transformation of cultured human myeloma cell lines. Br J Haematol 2005; 130: 926–938
  • Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E, et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002; 99: 1745–1757
  • Zhan F, Barlogie B, Shaughnessy J, Jr. Toward the identification of distinct molecular and clinical entities of multiple myeloma using global gene expression profiling. Semin Hematol 2003; 40: 308–320
  • Kastrinakis N G, Gorgoulis V G, Foukas P G, Dimopoulos M A, Kittas C. Molecular aspects of multiple myeloma. Ann Oncol 2000; 11: 1217–1228
  • Cafforio P, Dammacco F, Gernone A, Silvestris F. Statins activate the mitochondrial pathway of apoptosis in human lymphoblasts and myeloma cells. Carcinogenesis 2005; 26: 883–891
  • Frassanito M A, Cusmai A, Iodice G, Dammacco F. Autocrine interleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis. Blood 2001; 97: 483–489
  • Bueso-Ramos C E, Ferrajoli A, Medeiros L J, Keating M J, Estrov Z. Aberrant morphology, proliferation and apoptosis of B-cell chronic lymphocytic leukemia cells. Hematology 2004; 9: 279–286
  • Plumas J, Jacob M C, Chaperot L, Molens JP Sotto J J, Bensa J C. Tumor B cells from non-Hodgkin's lymphoma are resistant to CD95 (Fas/Apo-1)-mediated apoptosis. Blood 1998; 91: 2875–2885
  • Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M, et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2777–2783
  • Dicker F, Kater A P, Fukuda T, Kipps T J. Fas-ligand (CD178) and TRAIL synergistically induce apoptosis of CD40-activated chronic lymphocytic leukemia B cells. Blood 2005; 105: 3193–3198
  • Xerri L, Devilard E, Hassoun J, Haddad P, Birg F. Malignant and reactive cells from human lymphomas frequently express Fas ligand but display a different sensitivity to Fas-mediated apoptosis. Leukemia 1997; 11: 1868–1877
  • Caligaris-Cappio F, Bergui L, Gregoretti M G, Gaidano G Gasoli M, Schena M. Role of bone marrow stromal cells in the growth of human multiple myeloma. Blood 1991; 77: 2688–2693
  • Politou M, Terpos E, Anagnostopoulos A, Szydlo R, Laffan M, Layton M, et al. Role of receptor activator of nuclear factor-kappa B ligand (RANKL), osteoprotegerin and macrophage protein 1-alpha (MIP-1a) in monoclonal gammopathy of undetermined significance (MGUS). Br J Haematol 2004; 126: 686–689
  • Lai F P, Cole-Sinclair M, Cheng W J, Quinn J M, Gillespie M T, Sentry J W, et al. Myeloma cells can directly contribute to the pool of RANKL in bone by bypassing the classic stromal and osteoblast pathway of osteoclast stimulation. Br J Haematol 2004; 126: 192–201
  • Heider U, Zavrski I, Jakob C, Bangeroth K, Fleissner C, Langelotz C, et al. Expression of receptor activator of NF-kappaB ligand (RANKL) mRNA in human multiple myeloma cells. J Cancer Res Clin Oncol 2004; 130: 469–474
  • Bataille R, Cappard D, Basle M. Excessive bon resorption in human plasmacytomas: direct induction by tumor cells in vivo. Br J Haematol 1995; 90: 721–724
  • Nilsson K, Bennich H, Johansson S G, Ponten J. Established immunoglobulin producing myeloma (IgE) and lymphoblastoid cell lines from an IgE myeloma patient. Clin Exp Immunol 1970; 7: 477–489

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.