380
Views
23
CrossRef citations to date
0
Altmetric
Original

NY-ESO-1 immunotherapy for multiple myeloma

, & , MD, PhD
Pages 2037-2048 | Accepted 01 Apr 2006, Published online: 01 Jul 2009

References

  • Barlogie B, Jagannath S, Naucke S, Mattox S, Bracy D, Crowley J, et al. Long-term follow-up after high-dose therapy for high-risk multiple myeloma. Bone Marrow Transplant 1998; 21: 1101–1107
  • Barlogie B, Jagannath S, Desikan K R, Mattox S, Vesole D, Siegel D, et al. Total therapy with tandem transplants for newly diagnosed multiple myeloma. Blood 1999; 93: 55–65
  • Attal M, Harousseau J L, Facon T, Guilhot F, Doyen C, Fuzibet J G, et al. Single versus double autologous stem-cell transplantation for multiple myeloma.[see comment][erratum appears in N Engl J Med 2004;350:2628]. N Engl J Med 2003; 349: 2495–2502
  • Child J A, Morgan G J, Davies F E, Owen R G, Bell S E, Hawkins K, et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003; 348: 1875–1883
  • Fassas A, Shaughnessy J, Barlogie B. Cure of myeloma: hype or reality. Bone Marrow Transplant 2005; 35: 215–224
  • Barlogie B, Tricot G, Rasmussen E, Anaissie E, van Rhee F, Zangari M, et al. Total therapy 2 wihtout thalidomide: comparison with total therapy 1: role of intensified induction and post-transplant consolidation therapies. Blood 2006; 107: 2633–2638
  • Barlogie B, Shaughnessy J, Tricot G, Jacobson J, Zangari M, Anaissie E, et al. Treatment of multiple myeloma. Blood 2004; 103: 20–32
  • Barlogie B, Tricot G, Anaissie E, Shaughnessy J, Rasmussen E, van Rhee F, et al. Thalidomide and hematopoetic-cell transplantation for multiple myeloma. N Engl J Med 2006; 354: 1021–1030
  • Tricot G, Vesole D H, Jagannath S, Hilton J, Munshi N, Barlogie B. Graft-versus-myeloma effect: proof of principle. Blood 1996; 87: 1196–1198
  • Badros A, Barlogie B, Morris C, Desikan R, Martin S R, Munshi N, et al. High response rate in refractory and poor-risk multiple myeloma after allotransplantation using a nonmyeloablative conditioning regimen and donor lymphocyte infusions. Blood 2001; 97: 2574–2579
  • Mohty M, Boiron J M, Damaj G, Michallet A S, Bay J O, Faucher C, et al. Graft-versus-myeloma effect following antithymocyte globulin-based reduced intensity conditioning allogeneic stem cell transplantation. Bone Marrow Transplant 2004; 34: 77–84
  • Lokhorst H M, Schattenberg A, Cornelissen J J, van Oers M H, Fibbe W, Russell I, et al. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. J Clin Oncol 2000; 18: 3031–3037
  • Davis I D, Chen W, Jackson H, Parente P, Shackleton M, Hopkins W, et al. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4( + ) and CD8( + ) T cell responses in humans. Proc Natl Acad Sci (USA) 2004; 101: 10697–10702
  • Jager E. Vaccine strategies against NY-ESO-1 in cancer patients. Cancer Imm 2005; 5: 12
  • Davis I D, Schnurr M, Hopkins W, Miloradovic L, Old L J, et al. NY-ESO-1 protein-based cancer vaccines: the Melbourne experience. Cancer Imm 2005; 5: 13
  • Dudley M E, Wunderlich J R, Yang J C, Sherry R M, Topalian S L, Restifo N P, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23: 2346–2357
  • Ratta M, Curti A, Fogli M, Pantucci M, Viscomi G, Tazzari P, et al. Efficient presentation of tumor idiotype to autologous T cells by CD83( + ) dendritic cells derived from highly purified circulating CD14( + ) monocytes in multiple myeloma patients. Exp Hematol 2000; 28: 931–940
  • Yi Q, Desikan K R, Barlogie B, Munshi N. Optimizing dendritic cell-based immunotherapy in multiple myeloma. Br J Haematol 2002; 117: 297–305
  • Bendandi M, Gocke C D, Kobrin C B, Benko F A, Sternas L A, Pennington R, et al. Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma. Nat Med 1999; 5: 1171–1177
  • Neelapu S S, Baskar S, Kwak L W. Detection of keyhole limpet hemocyanin (KLH)-specific immune responses by intracellular cytokine assay in patients vaccinated with idiotype-KLH vaccine. J Cancer Res Clin Oncol 2001; 127(2)R14–R19
  • Timmerman J M, Czerwinski D K, Davis T A, Hsu F J, Benike C, Hao Z M, et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002; 99: 1517–1526
  • Coscia M, Mariani S, Battaglio S, Di Bello C, Fiore F, Foglietta M, et al. Long-term follow-up of idiotype vaccination in human myeloma as a maintenance therapy after high-dose chemotherapy. Leukemia 2004; 18: 139–145
  • Stevenson F K, Ottensmeier C H, Johnson P, Zhu D, Buchan S L, McCann K J, et al. DNA vaccines to attack cancer. Proc Natl Acad Sci (USA) 2004; 101(Suppl 2)14646–14652
  • Sahota S S, Townsend M, Stevenson F K. Identification and assembly of V genes as idiotype-specific DNA fusion vaccines in multiple myeloma. Meth Mol Med 2005; 113: 105–119
  • Timmerman J M, Levy R. Linkage of foreign carrier protein to a self-tumor antigen enhances the immunogenicity of a pulsed dendritic cell vaccine. J Immunol 2000; 164: 4797–4803
  • Liso A, Stockerl-Goldstein K E, Auffermann-Gretzinger S, Benike C J, Reichardt V, van Beckhoven A, et al. Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 2000; 6: 621–627
  • Reichardt V L, Milazzo C, Brugger W, Einsele H, Kanz L, Brossart P. Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells. Haematologica 2003; 88: 1139–1149
  • Reichardt V L, Okada C Y, Liso A, Benike C J, Stockerl-Goldstein K E, Engleman E G, et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma – a feasibility study. Blood 1999; 93: 2411–2419
  • Bogen B. Peripheral T cell tolerance as a tumor escape mechanism: deletion of CD4+ T cells specific for a monoclonal immunoglobulin idiotype secreted by a plasmacytoma. Eur J Immunol 1996; 26: 2671–2679
  • Treon S P, Maimonis P, Bua D, Young G, Raje N, Mollick J, et al. Elevated soluble MUC1 levels and decreased anti-MUC1 antibody levels in patients with multiple myeloma. Blood 2000; 96: 3147–3153
  • Neelapu S S, Munshi N C, Jagannath S, Watson T M, Pennington R, Reynolds C, et al. Tumor antigen immunization of sibling stem cell transplant donors in multiple myeloma. Bone Marrow Transplant 2005; 36: 315–323
  • Bendandi M, Rodriguez-Cavillo M, Inoges S, de Cerio A, Perez-Simon J, Rodriguez-Cabellero A. Combined vaccination with idiotype-pulsed dendritic cells and soluble protein idiotype for multiple myeloma patients relapsing after reduced-intensity conditioning allogeneic stem cell transplantation. Leuk Lymphoma 2006; 47: 29–37
  • Szmania S, Cottler-Fox M, Rosen N, Viswamitra S, Moreno A, Pomtree M, et al. A novel strategy for combining immunotherapy with high dose chemotherapy and auto-transplantation in high risk multiple myeloma. Blood 2004; 104: 798a, Abstract # 2920
  • Borello I, Biedrzycki B, Sheets N, Racke F, Huff C A, Loper K, et al. Autologous tumor combined with a GM-CSF-secreting cell line vaccine following autologous stem cell transplant (ASCT) in multiple myeloma. Proc Am Soc Clin Ocol 2003; 22: 167
  • Raje N, Hideshima T, Davies F E, Chauhan D, Treon S P, Young G, et al. Tumour cell/dendritic cell fusions as a vaccination strategy for multiple myeloma. Br J Haematol 2004; 125: 343–352
  • Hao S, Chan T, Xiang J. Genetically engineered myeloma cell vaccine. Meth Mol Med 2005; 113: 235–244
  • Xia D, Chan T, Xiang J. Dendritic cell/myeloma hybrid vaccine. Meth Mol Med 2005; 113: 225–233
  • Treon S P, Shima Y, Grossbard M L, Preffer F I, Belch A R, Pilarski L M, et al. Treatment of multiple myeloma by antibody mediated immunotherapy and induction of myeloma selective antigens. Ann Oncol 2000; 11: 107–111
  • Goto T, Kennel S J, Abe M, Takishita M, Kosaka M, Solomon A, et al. A novel membrane antigen selectively expressed on terminally differentiated human B cells. Blood 1994; 84: 1922–1930
  • Ohtomo T, Sugamata Y, Ozaki Y, Ono K, Yoshimura Y, Kawai S, et al. Molecular cloning and characterization of a surface antigen preferentially overexpressed on multiple myeloma cells. Biochem Biophys Res Comm 1999; 258: 583–591
  • Lim S H, Wang Z, Chiriva-Internati M, Xue Y. Sperm protein 17 is a novel cancer-testis antigen in multiple myeloma. Blood 2001; 97: 1508–1510
  • Zhang Y, Wang Z, Robinson W R, Lim S H. Combined real time PCR and immunohistochemical evaluation of sperm protein 17 as a cancer-testis antigen. Eur J Haematol 2004; 73: 280–284
  • Maecker B, Sherr D H, Vonderheide R H, von Bergwelt-Baildon M S, Hirano N, Anderson K S, et al. The shared tumor-associated antigen cytochrome P450 1B1 is recognized by specific cytotoxic T cells. Blood 2003; 102: 3287–3294
  • Wu K J, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, et al. Direct activation of TERT transcription by c-MYC. Nat Genet 1999; 21: 220–224
  • Qian J, Wang S, Yang J, Xie J, Lin P, Freeman M E, 3, et al. Targeting heat shock proteins for immunotherapy in multiple myeloma: generation of myeloma-specific CTLs using dendritic cells pulsed with tumor-derived gp96. Clin Cancer Res 2005; 11: 8808–8815
  • Brugger W, Buhring H J, Grunebach F, Vogel W, Kaul S, Muller R, et al. Expression of MUC-1 epitopes on normal bone marrow: implications for the detection of micrometastatic tumor cells. J Clin Oncol 1999; 17: 1535–1544
  • Grizzi F, Chiriva-Internati M, Franceschini B, Bumm K, Colombo P, Ciccarelli M, et al. Sperm protein 17 is expressed in human somatic ciliated epithelia. J Histochem Cytochem 2004; 52: 549–554
  • Dadabayev A R, Wang Z, Zhang Y, Zhang J, Robinson W R, Lim S H. Cancer immunotherapy targeting Sp17: when should the laboratory findings be translated to the clinics. Am J Hematol 2005; 80: 6–11
  • Brossart P, Schneider A, Dill P, Schammann T, Grunebach F, Wirths S, et al. The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes. Cancer Res 2001; 61: 6846–6850
  • Chiriva-Internati M, Wang Z, Xue Y, Bumm K, Hahn A B, Lim S H. Sperm protein 17 (Sp17) in multiple myeloma: opportunity for myeloma-specific donor T cell infusion to enhance graft-versus-myeloma effect without increasing graft-versus-host disease risk. Eur J Immunol 2001; 31: 2277–2283
  • Rew S B, Peggs K, Sanjuan I, Pizzey A R, Koishihara Y, Kawai S, et al. Generation of potent antitumor CTL from patients with multiple myeloma directed against HM1.24. Clin Cancer Res 2005; 11: 3377–3384
  • Maecker B, von Bergwelt-Baildon M S, Anderson K S, Vonderheide R H, Anderson K C, Nadler L M, et al. Rare naturally occurring immune responses to three epitopes from the widely expressed tumour antigens hTERT and CYP1B1 in multiple myeloma patients. Clin Exp Immunol 2005; 141: 558–562
  • Gribben J G, Ryan D P, Boyajian R, Urban R G, Hedley M L, Beach K, et al. Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin Cancer Res 2005; 11: 4430–4436
  • Reddish M, MacLean G D, Koganty R R, Kan-Mitchell J, Jones V, Mitchell M S, et al. Anti-MUC1 class I restricted CTLs in metastatic breast cancer patients immunized with a synthetic MUC1 peptide. Int J Cancer 1998; 76: 817–823
  • Jungbluth A A, Ely S, DiLiberto M, Niesvizky R, Williamson B, Frosina D, et al. The cancer-testis antigens CT7 (MAGE-C1) and MAGE-A3/6 are commonly expressed in multiple myeloma and correlate with plasma-cell proliferation. Blood 2005; 106: 167–174
  • Dhodapkar M V, Osman K, Teruya-Feldstein J, Filippa D, Hedvat C V, Iversen K, et al. Expression of cancer/testis (CT) antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease. Cancer Imm 2003; 3: 9
  • Taylor B, Reiman T, Pittman J, Keats J, de Bruin D, Mant M, et al. SSX cancer testis antigens are expressed in most multiple myeloma patients. J Immunother 2005; 28: 564–575
  • Szmania S, Bennett G, Batchu R, Rosen N, Gupta S, Xie J, et al. Dendritic cells pulsed with NY-ESO-1 and MAGE-3 peptides stimulate myeloma specific cytotoxic T lymphocytes. Blood 2002; 100: 399a
  • Chen Y T, Scanlan M J, Sahin U, Tureci O, Gure A O, Tsang S, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci (USA) 1997; 94: 1914–1918
  • Lethe B, Lucas S, Michaux L, De Smet C, Godelaine D, Serrano A, et al. LAGE-1, a new gene with tumor specificity. Int J Cancer 1998; 76: 903–908
  • Alpen B, Gure A O, Scanlan M J, Old L J, Chen Y T. A new member of the NY-ESO-1 gene family is ubiquitously expressed in somatic tissues and evolutionarily conserved. Gene 2002; 297: 141–149
  • Scanlan M J, Simpson A J, Old L J. The cancer/testis genes: review, standardization, and commentary. Cancer Imm 2004; 4: 1
  • Chen Y T, Boyer A D, Viars C S, Tsang S, Old L J, Arden K C. Genomic cloning and localization of CTAG, a gene encoding an autoimmunogenic cancer-testis antigen NY-ESO-1, to human chromosome Xq28. Cytogen Cell Gen 1997; 79: 237–240
  • Zendman A J, Ruiter D J, van Muijen G N. Cancer/testis-associated genes: identification, expression profile, and putative function. J Cell Physiol 2003; 194: 272–288
  • Jungbluth A A, Chen Y T, Stockert E, Busam K J, Kolb D, Iversen K, et al. Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues. Int J Cancer 2001; 92: 856–860
  • Sugita Y, Wada H, Fujita S, Nakata T, Sato S, Noguchi Y, et al. NY-ESO-1 expression and immunogenicity in malignant and benign breast tumors. Cancer Res 2004; 64: 2199–2204
  • Nakada T, Noguchi Y, Satoh S, Ono T, Saika T, Kurashige T, et al. NY-ESO-1 mRNA expression and immunogenicity in advanced prostate cancer. Cancer Imm 2003; 3: 10
  • Fujita S, Wada H, Jungbluth A A, Sato S, Nakata T, Noguchi Y, et al. NY-ESO-1 expression and immunogenicity in esophageal cancer. Clin Cancer Res 2004; 10: 6551–6558
  • Sarcevic B, Spagnoli G C, Terracciano L, Schultz-Thater E, Heberer M, Gamulin M, et al. Expression of cancer/testis tumor associated antigens in cervical squamous cell carcinoma. Oncology 2003; 64: 443–449
  • Kienstra M A, Neel H B, Strome S E, Roche P. Identification of NY-ESO-1, MAGE-1, and MAGE-3 in head and neck squamous cell carcinoma. Head Neck 2003; 25: 457–463
  • Akcakanat A, Kanda T, Tanabe T, Komukai S, Yajima K, Nakagawa S, et al. Heterogeneous expression of GAGE, NY-ESO-1, MAGE-A and SSX proteins in esophageal cancer: Implications for immunotherapy. Int J Cancer 2006; 118: 123–128
  • Odunsi K, Jungbluth A A, Stockert E, Qian F, Gnjatic S, Tammela J, et al. NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Res 2003; 63: 6076–6083
  • Maio M, Coral S, Sigalotti L, Elisei R, Romei C, Rossi G, et al. Analysis of cancer/testis antigens in sporadic medullary thyroid carcinoma: expression and humoral response to NY-ESO-1. J Clin Endocrinol Metab 2003; 88: 748–754
  • Schultz-Thater E, Noppen C, Gudat F, Durmuller U, Zajac P, Kocher T, et al. NY-ESO-1 tumour associated antigen is a cytoplasmic protein detectable by specific monoclonal antibodies in cell lines and clinical specimens. Br J Cancer 2000; 83: 204–208
  • Sharma P, Gnjatic S, Jungbluth A A, Williamson B, Herr H, Stockert E, et al. Frequency of NY-ESO-1 and LAGE-1 expression in bladder cancer and evidence of a new NY-ESO-1 T-cell epitope in a patient with bladder cancer. Cancer Immun 2003; 3: 19
  • Wang Y, Wu X J, Zhao A L, Yuan Y H, Chen Y T, Jungbluth A A, et al. Cancer/testis antigen expression and autologous humoral immunity to NY-ESO-1 in gastric cancer. Cancer Immun 2004; 4: 11
  • Mischo A, Kubuschok B, Ertan K, Preuss K D, Romeike B, Regitz E, et al. Prospective study on the expression of cancer testis genes and antibody responses in 100 consecutive patients with primary breast cancer. Int J Cancer 2006; 118: 696–703
  • Kurashige T, Noguchi Y, Saika T, Ono T, Nagata Y, Jungbluth A, et al. NY-ESO-1 expression and immunogenicity associated with transitional cell carcinoma: correlation with tumor grade. Cancer Res 2001; 61: 4671–4674
  • van Rhee F, Szmania S M, Zhan F, Gupta S K, Pomtree M, Lin P, et al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood 2005; 105: 3939–3944
  • van Baren N, Brasseur F, Godelaine D, Hames G, Ferrant A, Lehmann F, et al. Genes encoding tumor-specific antigens are expressed in human myeloma cells. Blood 1999; 94: 1156–1164
  • Pellat-Deceunynck C. Tumour-associated antigens in multiple myeloma. Br J Haematol 2003; 120: 3–9
  • de Vos J, Thykjaer T, Tarte K, Ensslen M, Raynaud P, Requirand G, et al. Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays. Oncogene 2002; 21: 6848–6857
  • Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E, et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002; 99: 1745–1757
  • Hong J A, Kang Y, Abdullaev Z, Flanagan P T, Pack S D, Fischette M R, et al. Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells. Cancer Res 2005; 65: 7763–7774
  • De Smet C, Lurquin C, Lethe B, Martelange V, Boon T. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 1999; 19: 7327–7335
  • Tarte K, de Vos J, Thykjaer T, Zhan F, Fiol G, Costes V, et al. Generation of polyclonal plasmablasts from peripheral blood B cells: a normal counterpart of malignant plasmablasts [see comment]. Blood 2002; 100: 1113–1122
  • Pellat-Deceunynck C, Mellerin M P, Labarriere N, Jego G, Moreau-Aubry A, Harousseau J L, et al. The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells. Eur J Immunol 2000; 30: 803–809
  • Gure A O, Chua R, Williamson B, Gonen M, Ferrera C A, Gnjatic S, et al. Cancer-Testis genes are coordinately expressed and are markers of poor aoutcome in non-small cell lung cancer. Clin Cancer Res 2005; 11: 8055–8062
  • Harrison S J, Cook G. Immunotherapy in multiple myeloma – possibility or probability. Br J Haematol 2005; 130: 344–362
  • Jager E, Chen Y T, Drijfhout J W, Karbach J, Ringhoffer M, Jager D, et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 1998; 187: 265–270
  • Valmori D, Dutoit V, Lienard D, Rimoldi D, Pittet M J, Champagne P, et al. Naturally occurring human lymphocyte antigen-A2 restricted CD8 + T-cell response to the cancer testis antigen NY-ESO-1 in melanoma patients. Cancer Res 2000; 60: 4499–4506
  • Stockert E, Jager E, Chen Y T, Scanlan M J, Gout I, Karbach J, et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens [comment]. J Exp Med 1998; 187: 1349–1354
  • Jager E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, et al. Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc Natl Acad Sci (USA) 2000; 97: 4760–4765
  • Jager E, Gnjatic S, Nagata Y, Stockert E, Jager D, Karbach J, et al. Induction of primary NY-ESO-1 immunity: CD8 + T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1 + cancers. Proc Natl Acad Sci (USA) 2000; 97: 12198–12203
  • Zeng G, Wang X, Robbins P F, Rosenberg S A, Wang R F. CD4( + ) T cell recognition of MHC class II-restricted epitopes from NY-ESO-1 presented by a prevalent HLA DP4 allele: association with NY-ESO-1 antibody production. Proc Natl Acad Sci (USA) 2001; 98: 3964–3969
  • Khong H T, Rosenberg S A. Pre-existing immunity to tyrosinase-related protein (TRP)- 2, a new TRP-2 isoform, and the NY-ESO-1 melanoma antigen in a patient with a dramatic response to immunotherapy. J Immunol 2002; 168: 951–956
  • Qian F, Gnjatic S, Jager E, Santiago D, Jungbluth A, Grande C, et al. Th1/Th2 CD4 + T cell responses against NY-ESO-1 in HLA-DPB1*0401/0402 patients with epithelial ovarian cancer. Cancer Immun 2004; 4: 12
  • Huarte E, Karbach J, Gnjatic S, Bender A, Jager D, Arand M, et al. HLA-DP4 expression and immunity to NY-ESO-1: correlation and characterization of cytotoxic CD4 + CD25- CD8- T cell clones. Cancer Immun 2004; 4: 15
  • Gnjatic S, Nagata Y, Jager E, Stockert E, Shankara S, Roberts B L, et al. Strategy for monitoring T cell responses to NY-ESO-1 in patients with any HLA class I allele. Proc Natl Acad Sci (USA) 2000; 97: 10917–10922
  • Goodyear O, Piper K, Khan N, Starczynski J, Mahendra P, Pratt G, et al. CD8 + T cells specific for cancer germline gene antigens are found in many patients with multiple myeloma, and their frequency correlates with disease burden. Blood 2005; 106: 4217–4224
  • Hoeppner L H, Dubovsky J A, Dunphy E J, McNeel D G. Humoral immune responses to testits antigens in sera from patients with prostate cancer. Cancer Immun 2006; 6: 1–7
  • Gnjatic S, Jager E, Chen W, Altorki N K, Matsuo M, Lee S Y, et al. CD8( + ) T cell responses against a dominant cryptic HLA-A2 epitope after NY-ESO-1 peptide immunization of cancer patients. Proc Natl Acad Sci (USA) 2002; 99: 11813–11818
  • Chen Q, Jackson H, Parente P, Luke T, Rizkalla M, Tai T Y, et al. Immunodominant CD4 + responses identified in a patient vaccinated with full-length NY-ESO-1 formulated with ISCOMATRIX adjuvant. Proc Natl Acad Sci (USA) 2004; 101: 9363–9368
  • Riker A I, Kammula U S, Panelli M C, Wang E, Ohnmacht G A, Steinberg S M, et al. Threshold levels of gene expression of the melanoma antigen gp100 correlate with tumor cell recognition by cytotoxic T lymphocytes. Int J Cancer 2000; 86: 818–826
  • Marincola F M, Jaffee E M, Hicklin D J, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000; 74: 181–273
  • Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4( + ) T cells in the antitumor immune response. J Exp Med 1998; 188: 2357–2368
  • Pardoll D M, Topalian S L. The role of CD4 + T cell responses in antitumor immunity. Curr Opin Immunol 1998; 10: 588–594
  • Toes R E, Ossendorp F, Offringa R, Melief C J. CD4 T cells and their role in antitumor immune responses. J Exp Med 1999; 189: 753–756
  • Valmori D, Souleimanian N E, Hesdorffer C S, Ritter G, Old L J, Ayyoub M. Identification of B cell epitopes recognized by antibodies specific for the tumor antigen NY-ESO-1 in cancer patients with spontaneous immune responses. Clin Immunol 2005; 117: 24–30
  • Preuss K D, Regitz E, Neumann F, Pfreundschuh M. B-cell epitopes from the cancer testis antigen NY-ESO-1. Int J Cancer 2006; 118: 253
  • Zeng G, Aldridge M E, Wang Y, Pantuck A J, Wang A Y, Liu Y X, et al. Dominant B cell epitope from NY-ESO-1 recognized by sera from a wide spectrum of cancer patients: implications as a potential biomarker [see comment]. Int J Cancer 2005; 114: 268–273
  • Rammensee H, Bachmann J, Emmerich N P, Bachor O A, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999; 50: 213–219
  • Parker K C, Bednarek M A, Coligan J E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 1994; 152: 163–175
  • Dutoit V, Taub R N, Papadopoulos K P, Talbot S, Keohan M L, Brehm M, et al. Multiepitope CD8(+) T cell response to a NY-ESO-1 peptide vaccine results in imprecise tumor targeting [comment]. J Clin Invest 2002; 110: 1813–1822
  • Bownds S, Tong-On P, Rosenberg S A, Parkhurst M. Induction of tumor-reactive cytotoxic T-lymphocytes using a peptide from NY-ESO-1 modified at the carboxy-terminus to enhance HLA-A2.1 binding affinity and stability in solution. J Immunother 2001; 24: 1–9
  • Chen J L, Dunbar P R, Gileadi U, Jager E, Gnjatic S, Nagata Y, et al. Identification of NY-ESO-1 peptide analogues capable of improved stimulation of tumor-reactive CTL. J Immunol 2000; 165: 948–955
  • Le Gal F A, Ayyoub M, Dutoit V, Widmer V, Jager E, Cerottini J C, et al. Distinct structural TCR repertoires in naturally occurring versus vaccine-induced CD8 + T-cell responses to the tumor-specific antigen NY-ESO-1. J Immunother 2005; 28: 252–257
  • Khong H T, Yang J C, Topalian S L, Sherry R M, Mavroukakis S A, White D E, et al. Immunization of HLA-A*0201 and/or HLA-DPbeta1*04 patients with metastatic melanoma using epitopes from the NY-ESO-1 antigen. J Immunother 2004; 27: 472–477
  • Khong H T, Wang Q J, Rosenberg S A. Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression. J Immunother 2004; 27: 184–190
  • Zeng G, Li Y, El-Gamil M, Sidney J, Sette A, Wang R F, et al. Generation of NY-ESO-1-specific CD4 + and CD8 + T cells by a single peptide with dual MHC class I and class II specificities: a new strategy for vaccine design. Cancer Res 2002; 62: 3630–3635
  • Celis E. Getting peptide vaccines to work: just a matter of quality control? [see comment]. J Clin Invest 2002; 110: 1765–1768
  • Murphy R, Green S, Ritter G, Cohen L, Ryan D, Woods W, et al. Recombinant NY-ESO-1 cancer antigen: production and purification under cGMP conditions. Prep Biochem Biotechnol 2005; 35: 119–134
  • Batchu R B, Moreno A M, Szmania S M, Bennett G, Spagnoli G C, Ponnazhagan S, et al. Protein transduction of dendritic cells for NY-ESO-1-based immunotherapy of myeloma. Cancer Res 2005; 65: 10041–10049
  • Gnjatic S, Szmania S, Moreno A, Cottler-Fox M, Shaughnessy J, Barlogie B, et al. Vaccination with MAGE-3 protein can induce a potent immune response in a healthy donor which can be adoptively transferred via stem cell transplant to a multiple myeloma patient. Blood 2005; 106: 620a
  • Ennis F A, Cruz J, Jameson J, Klein M, Burt D, Thipphawong J. Augmentation of human influenza A virus-specific cytotoxic T lymphocyte memory by influenza vaccine and adjuvanted carriers (ISCOMS). Virology 1999; 259: 256–261
  • Batchu R, Moreno A M, Szmania S, Gupta S K, Zhan F, Rosen N, et al. High-level expression of cancer/testis antigen NY-ESO-1 and human granulocyte-macrophage colony-stimulating factor in dendritic cells with a bicistronic retroviral vector. Human Gene Ther 2003; 14: 1333–1345
  • Lopex L, Fletcher K, Ikeda Y, Collins M. Lentiviral vector expression of tumour antigens in dendritic cells as an immunotherapeutic strategy. Cancer Immunol Immunother 2005; 26: 1–6
  • Dhodapkar K M, Krasovsky J, Williamson B, Dhodapkar M V. Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells [comment]. J Exp Med 2002; 195: 125–133
  • Nagata Y SO, Matsuo M, Gnjatic S, Valmori D, Ritter G, Garrett W, et al. Differential presentation of a soluble exogenous tumor antigen, NY-ESO-1, by distinct human dendritic cell populations. PNAS 2002; 99: 10629–10634
  • Cioca D P, Deak E, Cioca F, Paunescu V. Monoclonal antibodies targeted against melanoma and ovarian tumors enhance dendritic cell-mediated cross-presentation of tumor-associated antigens and efficiently corss-prime CD8 + T cells. J Immunother 2006; 29: 41–52
  • Chen W, Jackson H, Dimopoulos N, Tai T Y, Mifsud N A, Chen Q, et al. Systematic analysis of anti-NY-ESO-1 T cell responses reveals striking HLA-dependant immunodominance. J Immunother 2005; 28: 629
  • Smith C L, Mirza F, Pasquetto V, Tscharke D C, Palmowski M J, Dunbar P R, et al. Immunodominance of poxviral-specific CTL in a human trial of recombinant-modified vaccinia Ankara. J Immunol 2005; 175: 8431–8437
  • Rosenberg S A, Yang J C, Restifo N P. Cancer immunotherapy: moving beyond current vaccines [see comment]. Nature Med 2004; 10: 909–915
  • Dudley M E, Wunderlich J R, Robbins P F, Yang J C, Hwu P, Schwartzentruber D J, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298: 850–854
  • Rosenberg S A. Shedding light on immunotherapy for cancer. N Engl J Med 2004; 350: 1461–1463
  • Coulie P G, Connerotte T. Human tumor-specific T lymphocytes: does function matter more than number. Curr Opin Immunol 2005; 17: 320–325
  • Xue S A, Gao L, Hart D, Gillmore R, Qasim W, Thrasher A, et al. Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 2005; 106: 3062–3067
  • Zhao Y, Zheng Z, Robbins P F, Khong H T, Rosenberg S A, Morgan R A. Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines. J Immunol 2005; 174: 4415–4423
  • Brown R D, Pope B, Murray A, Esdale W, Sze D M, Gibson J, et al. Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood 2001; 98: 2992–2998
  • Letterio J J, Roberts A B. TGF-beta: a critical modulator of immune cell function. Clin Immunol Immunopathol 1997; 84: 244–250
  • Powell D J, Jr, Parker L L, Rosenberg S A. Large-scale depletion of CD25 + regulatory T cells from patient leukapheresis samples. J Immunother 2005; 28: 403–411
  • Shi J, Szmania S, Rosen N, Moreno A, Walker R, Dupont B, et al. Killer immunoglobulin-like receptor ligand mismatched natural killer cell transfusions for multiple myeloma. Blood 2005; 106: 969a
  • Jager E, Ringhoffer M, Karbach J, Arand M, Oesch F, Knuth A. Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8 + cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 1996; 66: 470–476
  • Gattei V, Fonsatti E, Sigalotti L, Degan M, Di Giacomo A M, Altomonte M, et al. Epigenetic immunomodulation of hematopoietic malignancies. Sem Oncol 2005; 32: 503–510
  • Egger G, Liang G, Aparicio A, Jones P A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429: 457–463
  • Weiser T S, Guo Z S, Ohnmacht G A, Parkhurst M L, Tong-On P, Marincola F M, et al. Sequential 5-Aza-2 deoxycytidine-depsipeptide FR901228 treatment induces apoptosis preferentially in cancer cells and facilitates their recognition by cytolytic T lymphocytes specific for NY- ESO-1. J Immunother 2001; 24: 151–161
  • Lurquin C, Lethe B, De Plaen E, Corbiere V, Theate I, van Baren N, et al. Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J Exp Med 2005; 201: 249–257
  • Tohnya T M, Figg W D. Immunomodulation of multiple myeloma. Cancer Biol Ther 2004; 3: 1060–1061
  • Davies F E, Raje N, Hideshima T, Lentzsch S, Young G, Tai Y T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma [see comment]. Blood 2001; 98: 210–216
  • Szmania S, Yi Q, Cottler-Fox M, Rosen N, Freeman J, Kordsmeier B, et al. Clinical-grade myeloma ag pre-loaded DC vaccines retain potency after cryopreservation. Cytotherapy 2005; 7: 374–384
  • Chen Q, Jackson H, Shackleton M, Parente P, Hopkins W, Sturrock S, et al. Characterization of antigen-specific CD8 + T lymphocyte responses in skin and peripheral blood following intradermal peptide vaccination. Cancer Immun 2005; 5: 5
  • Shackleton M, Davis I D, Hopkins W, Jackson H, Dimopoulos N, Tai T, et al. The impact of imiquimod, a Toll-like receptor-7 ligand (TLR7L), on the immunogenicity of melanoma peptide vaccination with adjuvant Flt3 ligand. Cancer Immun 2004; 4: 9
  • Sharma P, Bajorin D F, Altorki N, Hiroyoshi N, Old L, Gnjatic S. Protein and DNA based vaccines with the NY-ESO-1 antigen in cancer patients. J Immunother 2005; 28: 659
  • Zarour H, Andrade P, Mandic M, Kudela P, Janjic B, Land S, et al. Randomized phaseI/II study of vaccination with CpG 7909, montanide ISA 720 and NY-ESO-1 peptides for patients with stage III/IV melanoma and NY-ESO-1 positive tumors: an interim analysis. J Immunother 2005; 28: 661

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.