510
Views
103
CrossRef citations to date
0
Altmetric
Review

Multipotent mesenchymal stromal cells and immune tolerance

, , , &
Pages 1283-1289 | Received 19 Mar 2007, Accepted 23 Mar 2007, Published online: 01 Jul 2009

References

  • Friedenstein A J, Piatetzky S, II, Petrakova K V. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16: 381–390
  • Barry F P, Murphy J M. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004; 36: 568–584
  • D'Ippolito G, Diabira S, Howard G A, Menei P, Roos B A, Schiller P C. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 2004; 117: 2971–2981
  • Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie C M. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001; 98: 2615–2625
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317
  • Friedenstein A J, Chailakhjan R K, Lalykina K S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970; 3: 393–403
  • Gronthos S, Simmons P J. The biology and application of human bone marrow stromal cell precursors. J Hematother 1996; 5: 15–23
  • Stolzing A, Scutt A. Age-related impairment of mesenchymal progenitor cell function. Aging Cell 2006; 5: 213–224
  • Ringden O, Le Blanc K. Allogeneic hematopoietic stem cell transplantation: state of the art and new perspectives. APMIS 2005; 113: 813–830
  • Kashiwakura I, Takahashi T A. Fibroblast growth factor and ex vivo expansion of hematopoietic progenitor cells. Leuk Lymphoma 2005; 46: 329–333
  • Pittenger M, Vanguri P, Simonetti D, Young R. Adult mesenchymal stem cells: potential for muscle and tendon regeneration and use in gene therapy. J Musculoskelet Neuronal Interact 2002; 2: 309–320
  • Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999; 103: 697–705
  • Phinney D G, Isakova I. Plasticity and therapeutic potential of mesenchymal stem cells in the nervous system. Curr Pharm Des 2005; 11: 1255–1265
  • Tropel P, Platet N, Platel J C, Noel D, Albrieux M, Benabid A L, et al. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 2006; 24: 2868–2876
  • Bhatia R, Hare J M. Mesenchymal stem cells: future source for reparative medicine. Congest Heart Fail 2005; 11: 87–91, quiz 92 – 93
  • Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 2000; 113(Pt 7)1161–1166
  • Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31: 890–896
  • Tse W T, Pendleton J D, Beyer W M, Egalka M C, Guinan E C. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75: 389–397
  • Djouad F, Bony C, Haupl T, Uze G, Lahlou N, Louis-Plence P, et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther 2005; 7: R1304–R1315
  • Potian J A, Aviv H, Ponzio N M, Harrison J S, Rameshwar P. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol 2003; 171: 3426–3434
  • Chan J L, Tang K C, Patel A P, Bonilla L M, Pierobon N, Ponzio N M, et al. Antigen presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-{gamma}. Blood 2006; 107: 4817–4824
  • Stagg J, Pommey S, Eliopoulos N, Galipeau J. Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 2006; 107: 2570–2577
  • Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2002; 27: 27
  • Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30: 42–48
  • Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102: 3837–3844
  • Glennie S, Soeiro I, Dyson P J, Lam E W, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005; 105: 2821–2827
  • Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107: 367–372
  • Angoulvant D, Clerc A, Benchalal S, Galambrun C, Farre A, Bertrand Y, et al. Human mesenchymal stem cells suppress induction of cytotoxic response to alloantigens. Biorheology 2004; 41: 469–476
  • Rasmusson I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003; 76: 1208–1213
  • Aggarwal S, Pittenger M F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822
  • Poggi A, Prevosto C, Massaro A M, Negrini S, Urbani S, Pierri I, et al. Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering: role of NKp30 and NKG2D receptors. J Immunol 2005; 175: 6352–6360
  • Spaggiari G M, Capobianco A, Becchetti S, Mingari M C, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006; 107: 1484–1490
  • Maitra B, Szekely E, Gjini K, Laughlin M J, Dennis J, Haynesworth S E, et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant 2004; 33: 597–604
  • Groh M E, Maitra B, Szekely E, Koc O N. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 2005; 33: 928–934
  • Le Blanc K, Tammik L, Sundberg B, Haynesworth S E, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57: 11–20
  • Rasmusson I. Immune modulation by mesenchymal stem cells. Exp Cell Res 2006; 312: 2169–2179
  • Jiang X X, Zhang Y, Liu B, Zhang S X, Wu Y, Yu X D, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105: 4120–4126
  • Nauta A J, Kruisselbrink A B, Lurvink E, Willemze R, Fibbe W E. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 2006; 177: 2080–2087
  • Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103: 4619–4621
  • Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al. Role for IFN-{gamma} in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 2005; 24: 386–398
  • Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, et al. Nitric oxide plays a critical role in suppression of T cell proliferation by mesenchymal stem cells. Blood 2006; 109: 228–234
  • Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni P D, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843
  • Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005; 106: 1755–1761
  • Plumas J, Chaperot L, Richard M J, Molens J P, Bensa J C, Favrot M C. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 2005; 19: 1597–1604
  • Maccario R, Podesta M, Moretta A, Cometa A, Comoli P, Montagna D, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 2005; 90: 516–525
  • Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 2005; 105: 2214–2219
  • Albina J E, Abate J A, Henry W L, Jr. Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway. J Immunol 1991; 147: 144–148
  • Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 2007; 109: 228–234
  • Devine S M, Bartholomew A M, Mahmud N, Nelson M, Patil S, Hardy W, et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 2001; 29: 244–255
  • Nauta A J, Westerhuis G, Kruisselbrink A B, Lurvink E G, Willemze R, Fibbe W E. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 2006; 108: 2114–2120
  • Sudres M, Norol F, Trenado A, Gregoire S, Charlotte F, Levacher B, et al. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J Immunol 2006; 176: 7761–7767
  • Koc O N, Gerson S L, Cooper B W, Dyhouse S M, Haynesworth S E, Caplan A I, et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 2000; 18: 307–316
  • Lazarus H M, Haynesworth S E, Gerson S L, Rosenthal N S, Caplan A I. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995; 16: 557–564
  • Lazarus H M, Koc O N, Devine S M, Curtin P, Maziarz R T, Holland H K, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005; 11: 389–398
  • Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–1441
  • Horwitz E M, Prockop D J, Fitzpatrick L A, Koo W W, Gordon P L, Neel M, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999; 5: 309–313

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.