343
Views
34
CrossRef citations to date
0
Altmetric
Original Articles: Research

Expression profile of orphan receptor tyrosine kinase (ROR1) and Wilms' tumor gene 1 (WT1) in different subsets of B-cell acute lymphoblastic leukemia

, , , , , , , , , , & show all
Pages 1360-1367 | Received 18 Feb 2008, Accepted 11 Apr 2008, Published online: 01 Jul 2009

References

  • Bruchova H, Kalinova M, Brdicka R. Array-based analysis of gene expression in childhood acute lymphoblastic leukemia. Leuk Res 2004; 28: 1–7
  • Kuchinskaya E, Heyman M, Grander D, Linderholm M, Soderhall S, Zaritskey A, et al. Children and adults with acute lymphoblastic leukaemia have similar gene expression profiles. Eur J Haematol 2005; 74: 466–480
  • Moos P J, Raetz E A, Carlson M A, Szabo A, Smith F E, Willman C, et al. Identification of gene expression profiles that segregate patients with childhood leukemia. Clin Cancer Res 2002; 8: 3118–3130
  • Armstrong S A, Staunton J E, Silverman L B, Pieters R, den Boer M L, Minden M D, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47
  • Ebert B L, Golub T R. Genomic approaches to hematologic malignancies. Blood 2004; 104: 923–932
  • Kohlmann A, Schoch C, Schnittger S, Dugas M, Hiddemann W, Kern W, et al. Pediatric acute lymphoblastic leukemia (ALL) gene expression signatures classify an independent cohort of adult ALL patients. Leukemia 2004; 18: 63–71
  • Ross M E, Zhou X, Song G, Shurtleff S A, Girtman K, Williams W K, et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003; 102: 2951–2959
  • Willenbrock H, Juncker A S, Schmiegelow K, Knudsen S, Ryder L P. Prediction of immunophenotype, treatment response, and relapse in childhood acute lymphoblastic leukemia using DNA microarrays. Leukemia 2004; 18: 1270–1277
  • Yeoh E J, Ross M E, Shurtleff S A, Williams W K, Patel D, Mahfouz R, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 133–143
  • Shawver L K, Slamon D, Ullrich A. Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell 2002; 1: 117–123
  • Becker J C, Muller-Tidow C, Serve H, Domschke W, Pohle T. Role of receptor tyrosine kinases in gastric cancer: new targets for a selective therapy. World J Gastroenterol 2006; 12: 3297–3305
  • Meshinchi S, Stirewalt D L, Alonzo T A, Zhang Q, Sweetser D A, Woods W G, et al. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood 2003; 102: 1474–1479
  • Stirewalt D L, Radich J P. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 2003; 3: 650–665
  • Forrester W C, Dell M, Perens E, Garriga G. A.C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature 1999; 400: 881–885
  • Masiakowski P, Carroll R D. A novel family of cell surface receptors with tyrosine kinase-like domain. J Biol Chem 1992; 267: 26181–26190
  • Reddy U R, Phatak S, Allen C, Nycum L M, Sulman E P, White P S, et al. Localization of the human Ror1 gene (NTRKR1) to chromosome 1p31-p32 by fluorescence in situ hybridization and somatic cell hybrid analysis. Genomics 1997; 41: 283–285
  • Reddy U R, Phatak S, Pleasure D. Human neural tissues express a truncated Ror1 receptor tyrosine kinase, lacking both extracellular and transmembrane domains. Oncogene 1996; 13: 1555–1559
  • Matsuda T, Nomi M, Ikeya M, Kani S, Oishi I, Terashima T, et al. Expression of the receptor tyrosine kinase genes, Ror1 and Ror2, during mouse development. Mech Dev 2001; 105: 153–156
  • Nomi M, Oishi I, Kani S, Suzuki H, Matsuda T, Yoda A, et al. Loss of mRor1 enhances the heart and skeletal abnormalities in mRor2-deficient mice: redundant and pleiotropic functions of mRor1 and mRor2 receptor tyrosine kinases. Mol Cell Biol 2001; 21: 8329–8335
  • Paganoni S, Ferreira A. Neurite extension in central neurons: a novel role for the receptor tyrosine kinases Ror1 and Ror2. J Cell Sci 2005; 118: 433–446
  • Klein U, Tu Y, Stolovitzky G A, Mattioli M, Cattoretti G, Husson H, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 2001; 194: 1625–1638
  • Rosenwald A, Alizadeh A A, Widhopf G, Simon R, Davis R E, Yu X, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001; 194: 1639–1647
  • Boublikova L, Kalinova M, Ryan J, Quinn F, O'Marcaigh A, Smith O, et al. Wilms' tumor gene 1 (WT1) expression in childhood acute lymphoblastic leukemia: a wide range of WT1 expression levels, its impact on prognosis and minimal residual disease monitoring. Leukemia 2006; 20: 254–263
  • Cilloni D, Gottardi E, Saglio G. WT1 overexpression in acute myeloid leukemia and myelodysplastic syndromes. Methods Mol Med 2006; 125: 199–211
  • Nakatsuka S, Oji Y, Horiuchi T, Kanda T, Kitagawa M, Takeuchi T, et al. Immunohistochemical detection of WT1 protein in a variety of cancer cells. Mod Pathol 2006; 19: 804–814
  • Scholz H, Kirschner K M. A role for the Wilms' tumor protein WT1 in organ development. Physiology (Bethesda) 2005; 20: 54–59
  • Haber D A, Housman D E. Role of the WT1 gene in Wilms' tumour. Cancer Surv 1992; 12: 105–117
  • Siehl J M, Reinwald M, Heufelder K, Menssen H D, Keilholz U, Thiel E. Expression of Wilms' tumor gene 1 at different stages of acute myeloid leukemia and analysis of its major splice variants. Ann Hematol 2004; 83: 745–750
  • Chiusa L, Francia di Celle P, Campisi P, Ceretto C, Marmont F, Pich A. Prognostic value of quantitative analysis of WT1 gene transcripts in adult acute lymphoblastic leukemia. Haematologica 2006; 91: 270–271
  • Olszewski M, Huang W, Chou P M, Duerst R, Kletzel M. Wilms' tumor 1 (WT1) gene in hematopoiesis: a surrogate marker of cell proliferation as a possible mechanism of action?. Cytotherapy 2005; 7: 57–61
  • Han X, Bueso-Ramos C E. Advances in the pathological diagnosis and biology of acute lymphoblastic leukemia. Ann Diagn Pathol 2005; 9: 239–257
  • Gharagozlou S, Ghods R, Bahrami Z S, Roohi A, Jeddi-Tehrani M, Conti-Fine B M, et al. Characterization of human hybridoma clones isolated from hemophilia patients with specificity for different domains of coagulating factor VIII. Hum Antibodies 2003; 12: 67–76
  • Shibuya H, Nagai T, Ishii A, Yamamoto K, Hirohata S. Differential regulation of Th1 responses and CD154 expression in human CD4+ T cells by IFN-alpha. Clin Exp Immunol 2003; 132: 216–224
  • Asgarian Omran H, Shabani M, Shahrestani T, Sarafnejad A, Khoshnoodi J, Vossough P, et al. Immunophenotypic subtyping of leukemic cells from Iranian patients with acute lymphoblastic leukaemia: association to disease outcome. Iran J Immunol 2007; 4: 15–25
  • Hokland P, Ritz J, Schlossman S F, Nadler L M. Orderly expression of B cell antigens during the in vitro differentiation of nonmalignant human pre-B cells. J Immunol 1985; 135: 1746–1751
  • Foon K A, Todd RF I II. Immunologic classification of leukemia and lymphoma. Blood 1986; 68: 1–31
  • Walsh S H, Rosenquist R. Immunoglobulin gene analysis of mature B-cell malignancies: reconsideration of cellular origin and potential antigen involvement in pathogenesis. Med Oncol 2005; 22: 327–341
  • Bene M C. Immunophenotyping of acute leukaemias. Immunol Lett 2005; 98: 9–21
  • Campana D, Behm F G. Immunophenotyping of leukemia. J Immunol Methods 2000; 243: 59–75
  • Cario G, Stanulla M, Fine B M, Teuffel O, Neuhoff N V, Schrauder A, et al. Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood 2005; 105: 821–826
  • Hunger S P. Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood 1996; 87: 1211–1224
  • Su A I, Welsh J B, Sapinoso L M, Kern S G, Dimitrov P, Lapp H, et al. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 2001; 61: 7388–7393
  • De Pitta C, Tombolan L, Campo Dell'Orto M, Accordi B, te Kronnie G, Romualdi C, et al. A leukemia-enriched cDNA microarray platform identifies new transcripts with relevance to the biology of pediatric acute lymphoblastic leukemia. Haematologica 2005; 90: 890–898
  • Im H J, Kong G, Lee H. Expression of Wilms tumor gene (WT1) in children with acute leukemia. Pediatr Hematol Oncol 1999; 16: 109–118
  • Kletzel M, Olzewski M, Huang W, Chou P M. Utility of WT1 as a reliable tool for the detection of minimal residual disease in children with leukemia. Pediatr Dev Pathol 2002; 5: 269–275
  • Magyarosy E, Varga N, Timar J, Raso E. Follow-up of minimal residual disease in acute childhood lymphoblastic leukemia by WT1 gene expression in the peripheral blood: the Hungarian experience. Pediatr Hematol Oncol 2003; 20: 65–74
  • Miwa H, Beran M, Saunders G F. Expression of the Wilms' tumor gene (WT1) in human leukemias. Leukemia 1992; 6: 405–409
  • Omran H, Shabani M, Vossough P, Sharifian R, Tabrizi M, Khoshnoodi J, et al. Cross-sectional monitoring of Wilms' tumor gene 1 (WT1) expression in Iranian patients with acute lymphoblastic leukemia at diagnosis, relapse and remission. Leuk Lymphoma 2008; 49: 281–290
  • Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 1994; 84: 3071–3079
  • Gaiger A, Schmid D, Heinze G, Linnerth B, Greinix H, Kalhs P, et al. Detection of the WT1 transcript by RT-PCR in complete remission has no prognostic relevance in de novo acute myeloid leukemia. Leukemia 1998; 12: 1886–1894
  • Spanaki A, Linardakis E, Perdikogianni C, Stiakaki E, Morotti A, Cilloni D, et al. Quantitative assessment of WT1 expression in diagnosis of childhood acute leukemia. Leuk Res 2007; 31: 570–572
  • Ludwig W D, Rieder H, Bartram C R, Heinze B, Schwartz S, Gassmann W, et al. Immunophenotypic and genotypic features, clinical characteristics, and treatment outcome of adult pro-B acute lymphoblastic leukemia: results of the German multicenter trials GMALL 03/87 and 04/89. Blood 1998; 92: 1898–1909
  • Borkhardt A, Wuchter C, Viehmann S, Pils S, Teigler-Schlegel A, Stanulla M, et al. Infant acute lymphoblastic leukemia – combined cytogenetic, immunophenotypical and molecular analysis of 77 cases. Leukemia 2002; 16: 1685–1690

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.