371
Views
10
CrossRef citations to date
0
Altmetric
Original Article

DNA methylation patterns of adult survivors of adolescent/young adult Hodgkin lymphoma compared to their unaffected monozygotic twin

, , , , , , , , , & show all
Pages 1429-1437 | Received 16 Jun 2018, Accepted 02 Oct 2018, Published online: 22 Jan 2019

References

  • Correa P, O'Conor GT. Epidemiologic patterns of Hodgkin disease. Int J Cancer. 1971;8:192–201.
  • Mueller N, Grufferman S. Hodgkin lymphopma In: Schottenfeld D, Fraumeni J, Jr., editors. Cancer epidemiology and prevention. Third Edition ed. NYC, NY: Oxford University Press; 2006. p. 872–898.
  • Mack TM, Cozen W, Shibata DK, et al. Concordance for Hodgkin disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med. 1995;332:413–418.
  • Cozen W, Timofeeva MN, Li D, et al. A meta-analysis of Hodgkin lymphoma reveals 19p13.3 TCF3 as a novel susceptibility locus. Nat commun. 2014;5:3856.
  • Khankhanian P, Cozen W, Himmelstein DS, et al. Meta-analysis of genome-wide association studies reveals genetic overlap between Hodgkin lymphoma and multiple sclerosis. Int J Epidemiol. 2016;45:728–740.
  • Clarke CA, Glaser SL, Keegan TH, et al. Neighborhood socioeconomic status and Hodgkin lymphoma incidence in California. Cancer Epidemiol, Biomarkers Prev. 2005;14:1441–1447.
  • Cozen W, Hamilton AS, Zhao P, et al. A protective role for early oral exposures in the etiology of young adult Hodgkin lymphoma. Blood. 2009;114:4014–4020.
  • Hjalgrim H, Askling J, Rostgaard K, et al. Characteristics of Hodgkin lymphoma after infectious mononucleosis. N Engl J Med. 2003;349:1324–1332.
  • Cozen W, Gill PS, Ingles SA, et al. IL-6 levels and genotype are associated with risk of young adult Hodgkin lymphoma. Blood. 2004;103:3216–3221.
  • Cozen W, Gill PS, Salam MT, et al. Interleukin-2, interleukin-12, and interferon-gamma levels and risk of young adult Hodgkin lymphoma. Blood. 2008;111:3377–3382.
  • Castellino SM, Geiger AM, Mertens AC, et al. Morbidity and mortality in long-term survivors of Hodgkin lymphoma: a report from the Childhood Cancer Survivor Study. Blood. 2011;117:1806–1816.
  • Swerdlow AJ, Higgins CD, Smith P, et al. Second cancer risk after chemotherapy for Hodgkin lymphoma: a collaborative British cohort study. JCO. 2011;29:4096–4104.
  • Hanly P, Soerjomataram I, Sharp L. Measuring the societal burden of cancer: the cost of lost productivity due to premature cancer-related mortality in Europe. Int J Cancer. 2015;136:E136–E145.
  • Fisher RI, DeVita VT, Jr., Bostick F, et al. Persistent immunologic abnormalities in long-term survivors of advanced Hodgkin disease. Ann Intern Med. 1980;92:595–599.
  • Ng AK, Li S, Recklitis C, et al. A comparison between long-term survivors of Hodgkin disease and their siblings on fatigue level and factors predicting for increased fatigue. Ann Oncol. 2005;16:1949–1955.
  • Punnett A, Tsang RW, Hodgson DC. Hodgkin lymphoma across the age spectrum: epidemiology, therapy, and late effects. Semin Radiat Oncol. 2010;20:30–44.
  • Collado-Hidalgo A, Bower JE, Ganz PA, et al. Inflammatory biomarkers for persistent fatigue in breast cancer survivors. Clin Cancer Res. 2006;12:2759–2766.
  • Ganz PA, Bower JE. Cancer related fatigue: a focus on breast cancer and Hodgkin disease survivors. Acta Oncologica (Stockholm, Sweden). 2007;46:474–479.
  • Kurzrock R. The role of cytokines in cancer-related fatigue. Cancer. 2001;92:1684–1688.
  • Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6:597–610.
  • Bell JT, Spector TD. DNA methylation studies using twins: what are they telling us? Genome Biol. 2012;13:172.
  • Grundberg E, Meduri E, Sandling JK, et al. Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements. Am J Hum Genet. 2013;93:876–890.
  • Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.
  • Marioni RE, Shah S, McRae AF, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16:25.
  • Chen BH, Marioni RE, Colicino E, et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging. 2016;8:1844–1865.
  • Marioni RE, Shah S, McRae AF, et al. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int J Epidemiol. 2015;44:1388–1396.
  • Ambatipudi S, Cuenin C, Hernandez-Vargas H, et al. Tobacco smoking-associated genome-wide DNA methylation changes in the EPIC study. Epigenomics. 2016;8:599–618.
  • Hou L, Zhang X, Wang D, et al. Environmental chemical exposures and human epigenetics. Int J Epidemiol. 2012;41:79–105.
  • Nyce J. Drug-induced DNA hypermethylation and drug resistance in human tumors. Cancer Res. 1989;49:5829–5836.
  • Dhiab MB, Ziadi S, Mestiri S, et al. DNA methylation patterns in EBV-positive and EBV-negative Hodgkin lymphomas. Cell Oncol. 2015;38:453–462.
  • Ushmorov A, Leithauser F, Sakk O, et al. Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood. 2006;107:2493–2500.
  • Ammerpohl O, Haake A, Pellissery S, et al. Array-based DNA methylation analysis in classical Hodgkin lymphoma reveals new insights into the mechanisms underlying silencing of B cell-specific genes. Leukemia. 2012;26:185–188.
  • Cozen W, Yu G, Gail MH, et al. Fecal microbiota diversity in survivors of adolescent/young adult Hodgkin lymphoma: a study of twins. Br J Cancer. 2013;108:1163–1167.
  • Mack TM, Deapen D, Hamilton AS. Representativeness of a roster of volunteer North American twins with chronic disease. Twin Res. 2000;3:33–42.
  • Cozen W, Hwang AE, Cockburn MG, et al. The USC adult twin cohorts: international twin study and California twin program. Twin Res Hum Genet. 2013;16:366–370.
  • Ji H, Ehrlich LI, Seita J, et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature. 2010; 467:338–342.
  • Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012;13:86.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B (Methodological). 1995;57:289–230.
  • Zheng Y, Joyce BT, Colicino E, et al. Blood epigenetic age may predict cancer incidence and mortality. EBioMedicine. 2016;5:68–73.
  • Dugue PA, Bassett JK, Joo JE, et al. DNA methylation-based biological aging and cancer risk and survival: pooled analysis of seven prospective studies. Int J Cancer. 2018;142:1611–1619.
  • Perna L, Zhang Y, Mons U, et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenetics. 2016;8:64.
  • Flanagan JM, Wilson A, Koo C, et al. Platinum-based chemotherapy induces methylation changes in blood DNA associated with overall survival in patients with ovarian cancer. Clin Cancer Res. 2017;23:2213–2222.
  • Phillips SM, Padgett LS, Leisenring WM, et al. Survivors of childhood cancer in the United States: prevalence and burden of morbidity. Cancer Epidemiol, Biomarkers Prev. 2015;24:653–663.
  • Mohty B, Mohty M. Long-term complications and side effects after allogeneic hematopoietic stem cell transplantation: an update. Blood Cancer J. 2011;1:e16.
  • Nyce JW. Drug-induced DNA hypermethylation: a potential mediator of acquired drug resistance during cancer chemotherapy. Mutat Res. 1997;386:153–161.
  • Cupit-Link MC, Kirkland JL, Ness KK, et al. Biology of premature ageing in survivors of cancer. ESMO Open. 2017;2:e000250.
  • DeVita VT. Jr. A selective history of the therapy of Hodgkin disease. Br J Haematol. 2003;122:718–727.
  • Horvath S, Gurven M, Levine ME, et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016;17:171.
  • Harty LC, Lin AY, Goldstein AM, et al. HLA-DR, HLA-DQ, and TAP genes in familial Hodgkin disease. Blood. 2002;99:690–693.
  • Mollaki V, Georgiadis T, Tassidou A, et al. Polymorphisms and haplotypes in TLR9 and MYD88 are associated with the development of Hodgkin lymphoma: a candidate-gene association study. J Hum Genet. 2009;54:655–659.
  • Butterbach K, Beckmann L, de Sanjose S, et al. Association of JAK-STAT pathway related genes with lymphoma risk: results of a European case-control study (EpiLymph). Brit J Haematol. 2011;153:318–333.
  • Hjalgrim H, Rostgaard K, Johnson PC, et al. HLA-A alleles and infectious mononucleosis suggest a critical role for cytotoxic T-cell response in EBV-related Hodgkin lymphoma. ProcNatl Acad Sci USA. 2010;107:6400.
  • Brady G, Whiteman HJ, Spender LC, et al. Downregulation of RUNX1 by RUNX3 requires the RUNX3 VWRPY sequence and is essential for Epstein-Barr virus-driven B-cell proliferation. J Virol. 2009;83:6909–6916.
  • Van Baak TE, Coarfa C, Dugue PA, et al. Epigenetic supersimilarity of monozygotic twin pairs. Genome Biol. 2018;19:2.
  • Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36.
  • McDade TW, Ryan C, Jones MJ, et al. Social and physical environments early in development predict DNA methylation of inflammatory genes in young adulthood. Proc Natl Acad Sci USA. 2017;114:7611–7616.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.