343
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Prognostic relevance of a blastic plasmacytoid dendritic cell neoplasm-like immunophenotype in cytogenetically normal acute myeloid leukemia patients

, , , , , , , , , , , , , , , , , & show all
Pages 1695-1701 | Received 09 Nov 2019, Accepted 19 Feb 2020, Published online: 18 Mar 2020

References

  • Pagano L, Valentini CG, Grammatico S, et al. Blastic plasmacytoid dendritic cell neoplasm: diagnostic criteria and therapeutical approaches. Br J Haematol. 2016;174(2):188–202.
  • Pemmaraju N, Kantarjian HM, Cortes JE, et al. Blastic plasmacytoid dendritic cell neoplasm (BPDCN): a large single-center experience: analysis of clinical and molecular characteristics and patient outcomes. [ASH abstract 3746]. Blood. 2015;126(23):3746–3746.
  • Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–2405.
  • Poret E, Vidal C, Desbrosses Y, et al. How to treat blastic plasmacytoid dendritic cell neoplasm (bpdcn) patients: results on 86 patients of the French BPDCN network. Blood. 2015;126(23):456–456.
  • Aoki T, Suzuki R, Kuwatsuka Y, et al. Long-term survival following autologous and allogeneic stem cell transplantation for blastic plasmacytoid dendritic cell neoplasm. Blood. 2015;125(23):3559–3562.
  • Pagano L, Valentini CG, Pulsoni A, et al. GIMEMA-ALWP (Gruppo Italiano Malattie EMatologiche dell’Adulto, Acute Leukemia Working Party). Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: an Italian multicenter study. Haematologica. 2013;98(2):239–246.
  • Alayed K, Patel KP, Konoplev S, et al. TET2 mutations, myelodysplastic features, and a distinct immunoprofile characterize blastic plasmacytoid dendritic cell neoplasm in the bone marrow. Am J Hematol. 2013;88(12):1055–1061.
  • Minetto P, Guolo F, Clavio M, et al. A blastic plasmacytoid dendritic cell neoplasm-like phenotype identifies a subgroup of NPM1-mutated acute myeloid leukemia patients with worse prognosis. Am J Hematol. 2018;93(2):E33–E35.
  • Falini B, Martelli MP, Bolli N, et al. Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity? Blood. 2011;117(4):1109–1120.
  • DöHner K, Schlenk RF, Habdank M,et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106(12):3740–3746,
  • Guolo F, Minetto P, Clavio M, et al. High feasibility and antileukemic efficacy of fludarabine, cytarabine, and idarubicin (FLAI) induction followed by risk‐oriented consolidation: a critical review of a 10‐year, single‐center experience in younger, non M3 AML patients. Am J Hematol. 2016;91(8):755–762.
  • Minetto P, Guolo F, Clavio M, et al. Early minimal residual disease assessment after AML induction with fludarabine, cytarabine and idarubicin (FLAI) provides the most useful prognostic information. Br J Haematol. 2018;184:457–460.
  • AmadoriS, Arcese W, Isacchi G, et al. Mitoxantrone, etoposide, and intermediate-dose cytarabine: an effective and tolerable regimen for the treatment of refractory acute myeloid leukemia. J Clin Oncol. 1991;9(7):1210–1214.
  • De Astis E, Clavio M, Raiola AM, et al. Liposomal daunorubicin, fludarabine, and cytarabine (FLAD) as bridge therapy to stem cell transplant in relapsed and refractory acute leukemia. Ann Hematol. 2014;93(12):2011–2018.
  • Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–447.
  • Guolo F, Minetto P, Clavio M, et al. Combining flow cytometry and WT1 assessment improves the prognostic value of pre-transplant minimal residual disease in acute myeloid leukemia. Haematologica. 2017;102(9):e348–e351.
  • Delgado J, Pereira A, Villamor N, et al. Survival analysis in hematologic malignancies: recommendations for clinicians. Haematologica. 2014;99(9):1410–1420.
  • Gorello P, Cazzaniga G, Alberti F, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia. 2006;20(6):1103–1108.
  • Miglino M, Colombo N, Grasso R, et al. Nucleophosmin gene-based monitoring in de novo cytogenetically normal acute myeloid leukemia with nucleophosmin gene mutations: comparison with cytofluorimetric analysis and study of Wilms tumor gene 1 expression. Leuk Lymphoma. 2012;53(11):2214–2217.
  • FröHling S, Schlenk RF, Breitruck J, et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood. 2002;100(13):4372–4380.
  • Schlenk RF, Kayser S, Bullinger L, et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood. 2014;124(23):3441–3449.
  • Pabst T, Mueller BU, Zhang P, et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-A (C/EBPA), in acute myeloid leukemia. Nat Genet. 2001;27(3):263–270.
  • Chang H, Salma F, Yi QL, et al. Prognostic relevance of immunophenotyping in 379 patients with acute myeloid leukemia. Leuk Res. 2004;28(1):43–48.
  • García-Dabrio MC, Hoyos M, Brunet S, et al. Complex measurements may be required to establish the prognostic impact of immunophenotypic markers in AML. Am J ClinPathol. 2015;144:484–492.
  • Riccioni R, Rossini A, Calabrò L, et al. Immunophenotypic features of acute myeloid leukemias overexpressing the interleukin 3 receptor alpha chain. Leuk Lymphoma. 2004;45(8):1511–1517.
  • Testa U, Riccioni R, Militi S, et al. Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood. 2002;100(8):2980–2988.
  • Testa U, Pelosi E, Frankel A. CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomark Res. 2014;2(1):4.
  • Vergez F, Green AS, Tamburini J, et al. High levels of CD34 + CD38low/-CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest-Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study. Haematologica. 2011;96(12):1792–1798.
  • Raspadori D, Damiani D, Lenoci M, et al. CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis. Leukemia. 2001;15(8):1161–1164.
  • Raspadori D, Damiani D, Michieli M, et al. CD56 and PGP expression in acute myeloid leukemia: impact on clinical outcome. Haematologica. 2002;87(11):1135–1140.
  • Zaidi SZA, Ibraheem H, Motabi IH. Al-Shanqeeti A. CD56 and RUNX1 isoforms in AML prognosis and their therapeutic potential. Hematol Oncol Stem Cell Ther. 2016;9(3):129–130.
  • Baer MR, Stewart CC, Lawrence D, et al. Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22). Blood. 1997;90(4):1643–1648.
  • Khoury H, Dalal BI, Nantel SH, et al. Correlation between karyotype and quantitative immunophenotype in acute myelogenous leukemia with t(8;21). Mod Pathol. 2004;17(10):1211–1216.
  • Ferrari A, Bussaglia E, Úbeda J, et al. Immunophenotype distinction between acute promyelocytic leukaemia and CD15- CD34- HLA-DR- acute myeloid leukaemia with nucleophosmin mutations. Hematol Oncol. 2012;30(3):109–114.
  • Nomdedeu J, Bussaglia E, Villamor N, et al. Immunophenotype of acute myeloid leukemia with NPM mutations: prognostic impact of the leukemic compartment size. Leuk Res. 2011;35(2):163–168.
  • Patteet L, Vermeulen K, Pieters K, et al. A hypogranular variant of acute promyelocytic leukaemia showing a heterogenic immunophenotype with CD34, CD2, HLA-DR positivity: a case report and review of the literature. Acta Clin Belg. 2012; 67(1):34–38.
  • Pemmaraju N. Novel pathways and potential therapeutic strategies for blastic plasmacytoid dendritic cell neoplasm (BPDCN): CD123 and beyond. Curr Hematol Malig Rep. 2017;12(6):510–512.
  • Laribi K, Denizon N, Besançon A, et al. Blastic plasmacytoid dendritic cell neoplasm: from origin of the cell to targeted therapies. Biol Blood Marrow Transplant. 2016;22:1357–1367.
  • Kovtun Y, Jones GE, Adams S, et al. A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Advances. 2018;2(8):848–858.
  • Han L, Jorgensen JL, Brooks C, et al. Antileukemia efficacy and mechanisms of action of SL-101, a novel Anti-CD123 antibody conjugate, in acute myeloid leukemia. Clin Cancer Res. 2017;23(13):3385–3395.
  • Williams BA, Law A, Hunyadkurti J, et al. Antibody therapies for acute myeloid leukemia: unconjugated, toxin-conjugated, radio-conjugated and multivalent formats. JCM. 2019;8(8):1261.
  • Haubner S, Perna F, Köhnke T, et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia. 2019;33:64–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.