570
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Subcutaneous panniculitis-like T-cell lymphoma, lupus erythematosus profundus, and overlapping cases: molecular characterization through the study of 208 genes

ORCID Icon, , , , , , , , , , , , , , , ORCID Icon, , , , , , ORCID Icon, , , , & show all
Pages 2130-2140 | Received 26 Oct 2020, Accepted 01 Mar 2021, Published online: 08 May 2021

References

  • Bosisio F, Boi S, Caputo V, et al. Lobular panniculitic infiltrates with overlapping histopathologic features of lupus panniculitis (lupus profundus) and subcutaneous T-cell lymphoma: a conceptual and practical dilemma. Am J Surg Pathol. 2015;39(2):206–211.
  • He A, Kwatra SG, Kazi N, et al. Atypical lymphocytic lobular panniculitis: an overlap condition with features of subcutaneous panniculitis-like T-cell lymphoma and lupus profundus. BMJ Case Rep. 2016;2016:bcr2016215335.
  • Magro CM, Crowson AN, Kovatich AJ, et al. Lupus profundus, indeterminate lymphocytic lobular panniculitis and subcutaneous T-cell lymphoma: a spectrum of subcuticular T-cell lymphoid dyscrasia. J Cutan Pathol. 2001;28(5):235–247.
  • Papalas JA, Wang E. Clinical and histopathologic overlap between subcutaneous panniculitis-like T-cell lymphoma with systemic features and small cell CD8+ ALK + systemic anaplastic large cell lymphoma with cutaneous involvement. J Cutan Pathol. 2016;43(5):480–481.
  • Petri M, Fu W, Ranger A, et al. Association between changes in gene signatures expression and disease activity among patients with systemic lupus erythematosus. BMC Med Genomics. 2019;12(1):4.
  • Pincus LB, LeBoit PE, McCalmont TH, et al. Subcutaneous panniculitis-like T-cell lymphoma with overlapping clinicopathologic features of lupus erythematosus: coexistence of 2 entities? Am J Dermatopathol. 2009;31(6):520–526.
  • Hahtola S, Burghart E, Jeskanen L, et al. Clinicopathological characterization and genomic aberrations in subcutaneous panniculitis-like T-cell lymphoma. J Invest Dermatol. 2008;128(9):2304–2309.
  • Fernandez-Pol S, Costa HA, Steiner DF, et al. High-throughput sequencing of subcutaneous panniculitis-like T-cell lymphoma reveals candidate pathogenic mutations. Appl Immunohistochem Mol Morphol. 2019;27(10):740–748.
  • Gayden T, Sepulveda FE, Khuong-Quang D-A, et al. Germline HAVCR2 mutations altering TIM-3 characterize subcutaneous panniculitis-like T cell lymphomas with hemophagocytic lymphohistiocytic syndrome. Nat Genet. 2018;50(12):1650–1657.
  • Li Z, Lu L, Zhou Z, et al. Recurrent mutations in epigenetic modifiers and the PI3K/AKT/mTOR pathway in subcutaneous panniculitis-like T-cell lymphoma. Br J Haematol. 2018;181(3):406–410.
  • Polprasert C, Takeuchi Y, Kakiuchi N, et al. Frequent germline mutations of HAVCR2 in sporadic subcutaneous panniculitis-like T-cell lymphoma. Blood Adv. 2019;3(4):588–595.
  • Sonigo G, Battistella M, Beylot-Barry M, et al. HAVCR2 mutations are associated with severe hemophagocytic syndrome in subcutaneous panniculitis-like T-cell lymphoma. Blood. 2020;135(13):1058–1061.
  • Maliniemi P, Hahtola S, Ovaska K, et al. Molecular characterization of subcutaneous panniculitis-like T-cell lymphoma reveals upregulation of immunosuppression- and autoimmunity-associated genes. Orphanet J Rare Dis. 2014;9:160.
  • Peñate Y, Servitje O, Machan S, et al. The first year of the AEVD primary cutaneous lymphoma registry. Actas Dermosifiliogr. 2018;109(7):610–616.
  • Jaffe ES, Gaulard P, Cerroni L. Subcutaneous panniculitis-like T-cell lymphoma. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2008. p. 383–385.
  • van Dongen JJM, Langerak AW, Brüggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–2317.
  • Groenen PJTA, Langerak AW, van Dongen JJM, et al. Pitfalls in TCR gene clonality testing: teaching cases. J Hematop. 2008;1(2):97–109.
  • Tsang H-F, Xue VW, Koh S-P, et al. NanoString, a novel digital color-coded barcode technology: current and future applications in molecular diagnostics. Expert Rev Mol Diagn. 2017;17(1):95–103.
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–15550.
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.
  • Salhany KE, Macon WR, Choi JK, et al. Subcutaneous panniculitis-like T-cell lymphoma: clinicopathologic, immunophenotypic, and genotypic analysis of alpha/beta and gamma/delta subtypes. Am J Surg Pathol. 1998;22(7):881–893.
  • Willemze R, Jansen PM, Cerroni L, et al. Subcutaneous panniculitis-like T-cell lymphoma: definition, classification, and prognostic factors: an EORTC Cutaneous Lymphoma Group Study of 83 cases. Blood. 2008;111(2):838–845.
  • Bosisio FM, Cerroni L. Expression of T-follicular helper markers in sequential biopsies of progressive mycosis fungoides and other primary cutaneous T-cell lymphomas. Am J Dermatopathol. 2015;37(2):115–121.
  • Fixemer J, Hummel JF, Arnold F, et al. Eomes cannot replace its paralog T-bet during expansion and differentiation of CD8 effector T cells. PLoS Pathog. 2020;16(9):e1008870.
  • Szabo SJ, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100(6):655–669.
  • Lauffer F, Jargosch M, Krause L, et al. Type I immune response induces keratinocyte necroptosis and is associated with interface dermatitis. J Invest Dermatol. 2018;138(8):1785–1794.
  • Hsi AC, Lee SJ, Rosman IS, et al. Expression of helper T cell master regulators in inflammatory dermatoses and primary cutaneous T-cell lymphomas: diagnostic implications. J Am Acad Dermatol. 2015;72(1):159–167.
  • Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123(19):2915–2923.
  • Amador C, Greiner TC, Heavican TB, et al. Reproducing the molecular subclassification of peripheral T-cell lymphoma-NOS by immunohistochemistry. Blood. 2019;134(24):2159–2170.
  • Pearce EL, Mullen AC, Martins GA, et al. Control of effector CD8+ T cell function by the transcription factor eomesodermin. Science. 2003;302(5647):1041–1043.
  • Atreya I, Schimanski CC, Becker C, et al. The T-box transcription factor eomesodermin controls CD8 T cell activity and lymph node metastasis in human colorectal cancer. Gut. 2007;56(11):1572–1578.
  • Querfeld C, Leung S, Myskowski PL, et al. Primary T cells from cutaneous T-cell lymphoma skin explants display an exhausted immune checkpoint profile. Cancer Immunol Res. 2018;6(8):900–909.
  • Fife BT, Pauken KE. The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann N Y Acad Sci. 2011;1217:45–59.
  • Dey-Rao R, Sinha AA. Genome-wide transcriptional profiling of chronic cutaneous lupus erythematosus (CCLE) peripheral blood identifies systemic alterations relevant to the skin manifestation. Genomics. 2015;105(2):90–100.
  • Fogagnolo L, Soares TCB, Senna CG, et al. Cytotoxic granules in distinct subsets of cutaneous lupus erythematosus. Clin Exp Dermatol. 2014;39(7):835–839.
  • Tsuzaka K, Nozaki K, Kumazawa C, et al. DNA microarray gene expression profile of T cells with the splice variants of TCRzeta mRNA observed in systemic lupus erythematosus. J Immunol. 2006;176(2):949–956.
  • Wang L, Wu L-F, Lu X, et al. Integrated analyses of gene expression profiles digs out common markers for rheumatic diseases. PLoS One. 2015;10(9):e0137522.
  • Sinha AA, Dey-Rao R. Genomic investigation of lupus in the skin. J Investig Dermatol Symp Proc. 2017;18(2):S75–S80.
  • Kaczmarczyk-Sekuła K, Dyduch G, Kostański M, et al. Mast cells in systemic and cutaneous lupus erythematosus. Pol J Pathol. 2015;66(4):397–402.
  • Bulfone-Paus S, Bahri R. Mast cells as regulators of T cell responses. Front Immunol. 2015;6:394.
  • Maurer M, Altrichter S, Schmetzer O, et al. Immunoglobulin E-mediated autoimmunity. Front Immunol. 2018;9:689.
  • Sanjuan MA, Sagar D, Kolbeck R. Role of IgE in autoimmunity. J Allergy Clin Immunol. 2016;137(6):1651–1661.
  • Meijer B, Gearry RB, Day AS. The role of S100A12 as a systemic marker of inflammation. Int J Inflamm. 2012;2012:1–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.