1,932
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

microRNAs as the biomarkers of chemotherapy-induced peripheral neuropathy in patients with multiple myeloma

, , , , , ORCID Icon, , , , , , , , & show all
Pages 2768-2776 | Received 06 Mar 2021, Accepted 15 May 2021, Published online: 07 Jun 2021

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA A Cancer J Clin. 2019;69(1):7–34.
  • Dimopoulos MA, Terpos E. Multiple myeloma. Ann Oncol. 2010;21(7):43–50.
  • Michels TC, Petersen KE. Multiple myeloma: diagnosis and treatment. Am Fam Physician. 2017;95(6):373–383.
  • Castella M, Fernandez de Larrea C, Martin-Antonio B. Immunotherapy: a novel era of promising treatments for multiple myeloma. Int J Mol Sci. 2018;19:11.
  • Richardson PG, Sonneveld P, Schuster MW, et al. Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modification guideline. Br J Haematol. 2009;144(6):895–903.
  • Chen D, Frezza M, Schmitt S, et al. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. CCDT. 2011;11(3):239–253.
  • Terpos E, Kleber M, Engelhardt M, et al. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematologica. 2015;100(10):1254–1266.
  • Duggett NA, Flatters SJL. Characterization of a rat model of bortezomib‐induced painful neuropathy. Br J Pharmacol. 2017;174(24):4812–4825.
  • Prince HM, Schenkel B, Mileshkin L. An analysis of clinical trials assessing the efficacy and safety of single-agent thalidomide in patients with relapsed or refractory multiple myeloma. Leuk Lymphoma. 2007;48(1):46–55.
  • Mileshkin L, Stark R, Day B, et al. Development of neuropathy in patients with myeloma treated with thalidomide: patterns of occurrence and the role of electrophysiologic monitoring. J Clin Oncol. 2006;24(27):4507–4514.
  • Califf RM. Biomarker definitions and their applications. Exp Biol Med. 2018;243(3):213–221.
  • Mayeux R. Biomarkers: potential uses and limitations. NeuroRx. 2004;1(2):182–188.
  • Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics. J Cell Physiol. 2016;231(1):25–30.
  • Robak P, Dróżdż I, Jarych D, et al. The value of serum MicroRNA expression signature in predicting refractoriness to bortezomib-based therapy in multiple myeloma patients. Cancers. 2020;12(9):2569.
  • Richardson PG, Delforge M, Beksac M, et al. Management of treatment-emergent peripheral neuropathy in multiple myeloma. Leukemia. 2012;26(4):595–608.
  • Łuczkowska K, Rogińska D, Ulańczyk Z, et al. Molecular mechanisms of bortezomib action: novel evidence for the miRNA-mRNA interaction involvement. IJMS. 2020;21(1):350.
  • Łuczkowska K, Rogińska D, Ulańczyk Z, et al. Effect of bortezomib on global gene expression in PC12-derived nerve cells. IJMS. 2020;21(3):751.
  • Herceg Z, Vaissière T. Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics. 2011;6(7):804–819.
  • Bollati V, Baccarelli A. Environmental epigenetics. Heredity. 2010;105(1):105–112.
  • Zaina S, Pérez-Luque EL, Lund G. Genetics talks to epigenetics? The interplay between sequence variants and chromatin structure. Curr Genomics. 2010;11(5):359–367.
  • Condrat CE, Thompson DC, Barbu MG, et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells. 2020;9(2):276.
  • Salahandish R, Ghaffarinejad A, Omidinia E, et al. Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene. Biosensbioelectron. 2018;120:129–136.
  • Cao Y, Green K, Quattlebaum S, et al. Methylated genomic loci encoding microRNA as a biomarker panel in tissue and saliva for head and neck squamous cell carcinoma. Clin Epigenetics. 2018;10:43.
  • Vila-Navarro E, Vila-Casadesús M, Moreira L, et al. MicroRNAs for detection of pancreatic neoplasia: biomarker discovery by next-generation sequencing and validation in 2 independent cohorts. Ann Surg. 2017;265(6):1226–1234.
  • Paul S, Vázquez LAB, Uribe SP, et al. Current status of microRNA-based therapeutic approaches in neurodegenerative disorders. Cells. 2020;9(7):1698.
  • Monteys AM, Wilson MJ, Boudreau RL, et al. Artificial miRNAs targeting mutant huntingtin show preferential silencing in vitro and in vivo. Mol Ther Nucleic Acids. 2015;4:e234.
  • Beg MS, Brenner AJ, Sachdev J, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drug. 2017;35(2):180–188.
  • Van Zandwijk N, Pavlakis N, Kao SC, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017;18(10):1386–1396.
  • Noguchi S, Iwasaki J, Kumazaki M, et al. Chemically modified synthetic microRNA-205 inhibits the growth of melanoma cells in vitro and in vivo. Mol Ther. 2013;21(6):1204–1211.
  • Hullinger GH, Montgomery RL, Seto AG, et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circres. 2012;110(1):71–81.
  • Parsi S, Smith PY, Goupil C, et al. Preclinical evaluation of miR-15/107 family members as multifactorial drug targets for Alzheimer's disease. Mo Mol Ther Nucleic Acids. 2015;4(10):e256.
  • Wang C, Ji B, Cheng B, et al. Neuroprotection of microRNA in neurological disorders. Biomed Rep. 2014;2(5):611–619.
  • Peng Q, Mechanic J, Shoieb A, et al. Circulating microRNA and automated motion analysis as novel methods of assessing chemotherapy-induced peripheral neuropathy in mice. PLoS One. 2019;14(1):e0210995.
  • Jovicic A, Jolissaint JFZ, Moser R, et al. MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington's disease-related mechanisms. PLoS One. 2013;8(1):e54222.
  • Yu S, Zeng YJ, Sun XC. Neuroprotective effects of p53/microRNA‑22 regulate inflammation and apoptosis in subarachnoid hemorrhage. Int J Mol Med. 2018;41(4):2406–2412.
  • Lin ST, Huang Y, Zhang L, et al. MicroRNA-23a promotes myelination in the central nervous system. Proc Natl Acad Sci U S A. 2013;110(43):17468–17473.
  • Chen Q, Xu J, Li L, et al. MicroRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell Death Dis. 2014;5(3):e1132.
  • Xia X, Wang Y, Zheng JC. The microRNA-17 ∼ 92 family as a key regulator of neurogenesis and potential regenerative therapeutics of neurological disorders. Stem Cell Rev Rep. 2020. doi: 10.1007/s12015-020-10050-5
  • Cho KHT, Xu B, Blenkiron C, et al. Emerging roles of miRNAs in brain development and perinatal brain injury. Frontphysiol. 2019;10:227.
  • Fei JF, Haffner C, Huttner WB. 3' UTR-dependent, miR-92-mediated restriction of Tis21 expression maintains asymmetric neural stem cell division to ensure proper neocortex size. Cell Rep. 2014;7(2):398–411.
  • Jin J, Kim SN, Liu X, et al. miR-17-92 cluster regulates adult hippocampal neurogenesis, anxiety, and depression. Cell Rep. 2016;16(6):1653–1663.
  • Xin H, Katakowski M, Wang F, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke. 2017;48(3):747–753.
  • Yang H, Wang H, Shu Y, et al. miR-103 promotes neurite outgrowth and suppresses cells apoptosis by targeting prostaglandin-endoperoxide synthase 2 in cellular models of Alzheimer's disease. Front Cell Neurosci. 2018;12:91.
  • Pan Z, Shan Q, Gu P, et al. miRNA-23a/CXCR4 regulates neuropathic pain via directly targeting TXNIP/NLRP3 inflammasome axis. Jneuroinflamm. 2018;15(1):29.