160
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Bone marrow ribonucleotide reductase mRNA levels and methylation status as prognostic factors in patients with myelodysplastic syndrome treated with 5-Azacytidine

, , , ORCID Icon, , , , , ORCID Icon, , , , , , , & show all
Pages 729-737 | Received 16 Aug 2021, Accepted 10 Oct 2021, Published online: 05 Nov 2021

References

  • Torrents E. Ribonucleotide reductases: essential enzymes for bacterial life. Front Cell Infect Microbiol. 2014;4:52.
  • Aye Y, Li M, Long MJ, et al. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene. 2015;34(16):2011–2021.
  • Misko TA, Liu Y-T, Harris ME, et al. Structure-guided design of anti-cancer ribonucleotide reductase inhibitors. J Enzyme Inhib Med Chem. 2019;34(1):438–450.
  • Mannargudi MB, Deb S. Clinical pharmacology and clinical trials of ribonucleotide reductase inhibitors: is it a viable cancer therapy? J Cancer Res Clin Oncol. 2017;143(8):1499–1529.
  • Guo JR, Chen QQ, Lam CW, et al. Profiling ribonucleotide and deoxyribonucleotide pools perturbed by gemcitabine in human non-small cell lung cancer cells. Sci Rep. 2016;6:37250.
  • Yun S, Vincelette ND, Abraham I, et al. Targeting epigenetic pathways in acute myeloid leukemia and myelodysplastic syndrome: a systematic review of hypomethylating agentstrials. Clin Epigenetics. 2016;8:68.
  • Carraway HE. Treatment options for patients with myelodysplastic syndromes after hypomethylating agent failure. Hematol Am Soc Hematol Educ Program. 2016;2016(1):470–477.
  • Hong M, He G. The 2016 revision to the world health organization classification of myelodysplastic syndromes. J Transl Int Med. 2017;5(3):139–143.
  • Cheson BD, Greenberg PL, Bennett JM, et al. Clinical application and proposal for modification of the international working group (IWG) response criteria in myelodysplasia. Blood. 2006;108(2):419–425.
  • Mawlood SK, Dennany L, Watson N, et al. The EpiTect methyl qPCR assay as novel age estimation method in forensic biology. Forensic Sci Int. 2016;264:132–138.
  • Cohen MH, Johnson JR, Pazdur RUS. Food and drug administration drug approval summary: conversion of imatinib mesylate (STI571; Gleevec) tablets from accelerated approval to full approval. Clin Cancer Res. 2005;11(1):12–19.
  • Hudes G, Carducci M, Tomczak P, et al. Global ARCC trial. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356(22):2271–2281.
  • Blumenthal GM, Scher NS, Cortazar P, et al. First FDA approval of dual anti-HER2 regimen: pertuzumab in combination with trastuzumab and docetaxel for HER2-positive metastatic breast cancer. Clin Cancer Res. 2013;19(18):4911–4916.
  • Baker CH, Banzon J, Bollinger JM, et al. 2'-Deoxy-2'-methylenecytidine and 2'-deoxy-2',2'-difluorocytidine 5'-diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase. J Med Chem. 1991;34(6):1879–1884.
  • Huang P, Plunkett W. Induction of apoptosis by gemcitabine. Semin Oncol. 1995;22(4 Suppl 11):19–25.
  • Tsesmetzis N, Paulin CBJ, Rudd SG, et al. Nucleobase and nucleoside analogues: resistance and re-sensitisation at the level of pharmacokinetics, pharmacodynamics and metabolism. Cancers. 2018;10(7):240.
  • Ahmad MF, Alam I, Huff SE, et al. Potent competitive inhibition of human ribonucleotide reductase by a nonnucleoside small molecule. Proc Natl Acad Sci USA. 2017;114(31):8241–8246.
  • Ertas M, Sahin Z, Bulbul EF, et al. Potent ribonucleotide reductase inhibitors: thiazole-containing thiosemicarbazone derivatives. Arch Pharm. 2019;352(11):e1900033.
  • Sagawa M, Ohguchi H, Harada T, et al. Ribonucleotide reductase catalytic subunit M1 (RRM1) as a novel therapeutic target in multiple myeloma. Clin Cancer Res. 2017;23(17):5225–5237.
  • Dai L, Lin Z, Qiao J, et al. Ribonucleotide reductase represents a novel therapeutic target in primary effusion lymphoma. Oncogene. 2017;36(35):5068–5074.
  • Liu C, Li Y, Hu R, et al. Knockdown of ribonucleotide reductase regulatory subunit M2 increases the drug sensitivity of chronic myeloid leukemia to imatinib-based therapy. Oncol Rep. 2019;42(2):571–580.
  • Aimiuwu J, Wang H, Chen P, et al. RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia. Blood. 2012;119(22):5229–5238.
  • Diamantopoulos PT, Kontandreopoulou CN, Symeonidis A, et al. Bone marrow PARP1 mRNA levels predict response to treatment with 5-azacytidine in patients with myelodysplastic syndrome. Ann Hematol. 2019;98(6):1383–1392.
  • Valencia A, Masala E, Rossi A, et al. Expression of nucleoside-metabolizing enzymes in myelodysplastic syndromes and modulation of response to azacitidine. Leukemia. 2014;28(3):621–628.
  • Hong JY, Seo JY, Kim SH, et al. Mutations in the spliceosomal machinery genes SRSF2, U2AF1, and ZRSR2 and response to decitabine in myelodysplastic syndrome. Anticancer Res. 2015;35(5):3081–3089.
  • Kennedy JA, Ebert BL. Clinical implications of genetic mutations in myelodysplastic syndrome. J Clin Oncol. 2017;35(9):968–974.
  • Komrokji RS, Sallman DA, Ali NA, et al. SF3B1 clone size is an independent determinant for overall survival and response to treatment in patients with myelodysplastic syndrome. Blood. 2019;134(Supplement_1):3001.
  • Malcovati L, Stevenson K, Papaemmanuil E, et al. SF3B1-mutant MDS as a distinct disease subtype: a proposal from the international working group for the prognosis of MDS. Blood. 2020;136(2):157–170.
  • Leeksma AC, Derks IAM, Kasem MH, et al. The effect of SF3B1 mutation on the DNA damage response and nonsense-mediated mRNA decay in cancer. Front Oncol. 2020;10:609409.
  • Dolatshad H, Pellagatti A, Fernandez-Mercado M, et al. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells [published correction appears in leukemia. 2015;29(8):1798]. Leukemia. 2015;29(5):1092–1103.
  • Pellagatti A, Armstrong RN, Steeples V, et al. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood. 2018;132(12):1225–1240.
  • Shiozawa Y, Malcovati L, Gallì A, et al. Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Nat Commun. 2018;9(1):3649.
  • Shen L, Kantarjian H, Guo Y, et al. DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol. 2010;28(4):605–613.
  • Jiang Y, Dunbar A, Gondek LP, et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood. 2009;113(6):1315–1325.
  • Figueroa ME, Skrabanek L, Li Y, et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood. 2009;114(16):3448–3458.
  • Römermann D, Hasemeier B, Metzig K, et al. Global increase in DNA methylation in patients with myelodysplastic syndrome. Leukemia. 2008;22(10):1954–1956.
  • Walter MJ, Ding L, Shen D, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25(7):1153–1158.
  • Raj K, Mufti GJ. Azacytidine (vidaza(R)) in the treatment of myelodysplastic syndromes. Ther Clin Risk Manag. 2006;2(4):377–388.
  • Gryn J, Zeigler ZR, Shadduck RK, et al. Treatment of myelodysplastic syndromes with 5-azacytidine. Leuk Res. 2002;26(10):893–897.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.