335
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Mitigating the BFL1-mediated antiapoptotic pathway in diffuse large B cell lymphoma by inhibiting HDACs

ORCID Icon, ORCID Icon, , , , , , , & show all
Pages 205-216 | Received 24 Jun 2022, Accepted 16 Oct 2022, Published online: 04 Nov 2022

References

  • Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Vol. 2. Lyon, France: International Agency for Research on Cancer; 2008.
  • Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–1947.
  • Coiffier B, Thieblemont C, Van Den Neste E, et al. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d‘Etudes des Lymphomes de l‘Adulte. Blood. 2010;116(12):2040–2045.
  • Pfreundschuh M, Trümper L, Österborg A, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7(5):379–391.
  • Habermann TM, Weller EA, Morrison VA, et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol. 2006;24(19):3121–3127.
  • Wang L, Li L-R, Young KH. New agents and regimens for diffuse large B cell lymphoma. J Hematol Oncol. 2020;13(1):1–23.
  • Ashkenazi A, Fairbrother WJ, Leverson JD, et al. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16(4):273–284.
  • Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2(9):647–656.
  • Green DR. A BH3 mimetic for killing cancer cells. Cell. 2016;165(7):1560.
  • Liu Y, Mondello P, Erazo T, et al. NOXA genetic amplification or pharmacologic induction primes lymphoma cells to BCL2 inhibitor-induced cell death. Proc Natl Acad Sci USA. 2018;115(47):12034–12039.
  • D’Aguanno S, Del Bufalo D. Inhibition of anti-apoptotic Bcl-2 proteins in preclinical and clinical studies: current overview in cancer. Cells. 2020;9(5):1287.
  • Gascoyne RD, Adomat SA, Krajewski S, et al. Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma. Blood. 1997;90(1):244–251.
  • Tsuyama N, Sakata S, Baba S, et al. BCL2 expression in DLBCL: reappraisal of immunohistochemistry with new criteria for therapeutic biomarker evaluation. Blood. 2017;130(4):489–500.
  • Morschhauser F, Feugier P, Flinn IW, et al. A phase 2 study of venetoclax plus R-CHOP as first-line treatment for patients with diffuse large B-cell lymphoma. Blood. 2021;137(5):600–609.
  • Boiko S, Proia TA, San Martin M, et al. Targeting bfl-1 via acute CDK9 inhibition overcomes intrinsic BH3 mimetic resistance in lymphomas. Blood. 2021;137(21):2947–2957.
  • Yecies D, Carlson NE, Deng J, et al. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood. 2010;115(16):3304–3313.
  • Esteve-Arenys A, Valero J, Chamorro-Jorganes A, et al. The BET bromodomain inhibitor CPI203 overcomes resistance to ABT-199 (venetoclax) by downregulation of BFL-1/A1 in in vitro and in vivo models of MYC+/BCL2+ double hit lymphoma. Oncogene. 2018;37(14):1830–1844.
  • Brien G, Trescol-Biemont M-C, Bonnefoy-Bérard N. Downregulation of Bfl-1 protein expression sensitizes malignant B cells to apoptosis. Oncogene. 2007;26(39):5828–5832.
  • Huhn AJ, Guerra RM, Harvey EP, et al. Selective covalent targeting of anti-apoptotic BFL-1 by cysteine-reactive stapled peptide inhibitors. Cell Chem Biol. 2016;23(9):1123–1134.
  • Harvey EP, Hauseman ZJ, Cohen DT, et al. Identification of a covalent molecular inhibitor of anti-apoptotic BFL-1 by disulfide tethering. Cell Chem Biol. 2020;27(6):647–656.e6.
  • Vogler M. BCL2A1: the underdog in the BCL2 family. Cell Death Differ. 2012;19(1):67–74.
  • Simpson LA, Burwell EA, Thompson KA, et al. The antiapoptotic gene A1/BFL1 is a WT1 target gene that mediates granulocytic differentiation and resistance to chemotherapy. Blood. 2006;107(12):4695–4702.
  • Ottina E, Tischner D, Herold MJ, et al. A1/Bfl-1 in leukocyte development and cell death. Exp Cell Res. 2012;318(11):1291–1303.
  • Barile E, Marconi GD, De SK, et al. hBfl-1/hNOXA interaction studies provide new insights on the role of Bfl-1 in cancer cell resistance and for the design of novel anticancer agents. ACS Chem Biol. 2017;12(2):444–455.
  • Chen I-C, Sethy B, Liou J-P. Recent update of HDAC inhibitors in lymphoma. Front Cell Dev Biol. 2020;8:576391.
  • Crump M, Coiffier B, Jacobsen E, et al. Phase II trial of oral vorinostat (suberoylanilide hydroxamic acid) in relapsed diffuse large-B-cell lymphoma. Ann Oncol. 2008;19(5):964–969.
  • Assouline SE, Nielsen TH, Yu S, et al. Phase 2 study of panobinostat with or without rituximab in relapsed diffuse large B-cell lymphoma. Blood. 2016;128(2):185–194.
  • Makki MS, Heinzel T, Englert C. TSA downregulates Wilms tumor gene 1 (Wt1) expression at multiple levels. Nucleic Acids Res. 2008;36(12):4067–4078.
  • Merck, pre-designed shRNA; 2020. https://www.sigmaaldrich.com/KR/ko/semi-configurators/shrna?activeLink=selectClones [cited 2020 Oct 10].
  • Jung H, Kim MJ, Kim DO, et al. TXNIP maintains the hematopoietic cell pool by switching the function of p53 under oxidative stress. Cell Metab. 2013;18(1):75–85.
  • Suh H-W, Yun S, Song H, et al. TXNIP interacts with hEcd to increase p53 stability and activity. Biochem Biophys Res Commun. 2013;438(2):264–269.
  • Marks P, Xu WS. Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem. 2009;107(4):600–608.
  • Yue X, Chen Q, He J. Combination strategies to overcome resistance to the BCL2 inhibitor venetoclax in hematologic malignancies. Cancer Cell Int. 2020;20(1):1–14.
  • Esteve-Arenys A, Roue G. BFL-1 expression determines the efficacy of venetoclax in MYC+/BCL2+ double hit lymphoma. Oncoscience. 2018;5(3–4):59–61.
  • Prukova D, Andera L, Nahacka Z, et al. Cotargeting of BCL2 with venetoclax and MCL1 with S63845 is synthetically lethal in vivo in relapsed mantle cell lymphoma. Clin Cancer Res. 2019;25(14):4455–4465.
  • Wang H, Guo M, Wei H, et al. Targeting MCL-1 in cancer: current status and perspectives. J Hematol Oncol. 2021;14(1):1–18.
  • Morales AA, Olsson A, Celsing F, et al. High expression of Bfl‐1 contributes to the apoptosis resistant phenotype in B‐cell chronic lymphocytic leukemia. Int J Cancer. 2005;113(5):730–737.
  • Wright GW, Phelan JD, Coulibaly ZA, et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell. 2020;37(4):551–568.e14.
  • Lee C, Song H, Song S, et al. Not BCL2 but BFL1 is overexpressed and have strong correlation with NFkB pathway in diffuse large B-cell lymphoma. Atlanta, Georgia:AACR; 2019.
  • Chen L, Monti S, Juszczynski P, et al. SYK inhibition modulates distinct PI3K/AKT-dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas. Cancer Cell. 2013;23(6):826–838.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.