2,289
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Use of tamibarotene, a potent and selective RARα agonist, in combination with azacitidine in patients with relapsed and refractory AML with RARA gene overexpression

, , , , , , , , , , , , , , , , , & show all
Pages 1992-2001 | Received 06 Apr 2023, Accepted 25 Jul 2023, Published online: 12 Aug 2023

References

  • DeWolf S, Tallman MS. How I treat relapsed or refractory AML. Blood. 2020;136(9):1023–1032. doi:10.1182/blood.2019001982
  • Ganzel C, Sun Z, Cripe LD, et al. Very poor long-term survival in past and more recent studies for relapsed AML patients: the ECOG-ACRIN experience. Am J Hematol. 2018;93(8):1074–1081. doi:10.1002/ajh.25162
  • McKeown MR, Corces MR, Eaton ML, et al. Superenhancer analysis defines novel epigenomic subtypes of non-APL AML including an RARa dependency targetable by SY-1425, a potent and selective RARα agonist. Cancer Discov. 2017;7(10):1136–1153. doi:10.1158/2159-8290.CD-17-0399
  • Kastner P, Chan S. Function of RARalpha during the maturation of neutrophils. Oncogene. 2001;20(49):7178–7185. doi:10.1038/sj.onc.1204757
  • Geoffroy MC, Esnault C, de Thé H. Retinoids in hematology: a timely revival? Blood. 2021;137(18):2429–2437. doi:10.1182/blood.2020010100
  • Du C, Redner RL, Cooke MP, et al. Overexpression of wild-type retinoic acid receptor α (RARα) recapitulates retinoic acid-sensitive transformation of primary myeloid progenitors by acute promyelocytic leukemia RARα-fusion genes. Blood. 1999;94(2):793–802. doi:10.1182/blood.V94.2.793
  • Amnolake (tamibarotene) [package insert]. Tokyo, Japan: Toko Pharmaceutical Industrial Co. Ltd.; 2005.
  • Muindi J, Frankel SR, Miller WHJr., et al. Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood. 1992;79(2):299–303. doi:10.1182/blood.V79.2.299.299
  • Muindi JR, Frankel SR, Huselton C, et al. Clinical pharmacology of oral all-trans retinoic acid in patients with acute promyelocytic leukemia. Cancer Res. 1992;52(8):2138–2142.
  • McKeown MR, Johannessen L, Lee E, et al. Antitumor synergy with SY-1425, a selective RARα agonist, and hypomethylating agents in retinoic acid receptor pathway activated models of acute myeloid leukemia. Haematologica. 2019;104(4):e138–e142. doi:10.3324/haematol.2018.192807
  • de Botton S, Cluzeau T, Vigil C, et al. Targeting RARA overexpression with tamibarotene, a potent and selective RARα agonist, is a novel approach in AML. Blood Adv. 2023;7(9):1858–1870. doi:10.1182/bloodadvances.2022008806
  • ClinicalTrials.gov [Internet]. Bethesda (MD): U.S. National Library of Medicine; 2023. Available from: https://clinicaltrials.gov/ct2/show/NCT02807558
  • Vigil Ce Jurcic J, Raza A, Cook R, et al. RARA pathway activation biomarkers in study SY-1425-201 define a new subset of AML and MDS patients and correlate with myeloid differentiation following ex vivo SY-1425 treatment. Abstracts from the 2017 European School of Haematology (ESH) 4th International Conference on Acute Myeloid Leukemia “Molecular and Translational”: Advances in Biology and Treatment. Abstract 8882.
  • Jurcic JG, Raza A, Vlad G, et al. Early results from a biomarker directed phase 2 trial of SY-1425 in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) demonstrate DHRS3 induction and myeloid differentiation following SY-1425 treatment. Blood. 2017;130(Suppl.  1):2633.
  • Cook RJ, Moyo TK, Liesveld JL, et al. Early results from a biomarker-directed phase 2 trial of SY-1425 in combination with azacitidine or daratumumab in non-APL acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Blood. 2018;132(Suppl. 1):2735. doi:10.1182/blood-2018-99-111285
  • Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 2003;21(24):4642–4649. doi:10.1200/JCO.2003.04.036
  • Craddock C, Labopin M, Robin M, et al. Clinical activity of azacitidine in patients who relapse after allogenic stem cell transplantation for acute myeloid leukemia. Haematologica. 2016;101(7):879–883. doi:10.3324/haematol.2015.140996
  • Itzykson R, Thépot S, Berthon C, et al. Azacitidine for the treatment of relapsed and refractory AML in older patients. Leuk Res. 2015;39(2):124–130. doi:10.1016/j.leukres.2014.11.009
  • Thépot S, Itzykson R, Seegers V, et al. Azacitidine in untreated acute myeloid leukemia: a report on 149 patients. Am J Hematol. 2014;89(4):410–416. doi:10.1002/ajh.23654
  • Woo J, Deeg HJ, Storer B, et al. Factors determining responses to azacitidine in patients with myelodysplastic syndromes and acute myeloid leukemia with early post-transplant relapse: a prospective trial. Biol Blood Marrow Transplant. 2017;23(1):176–179. doi:10.1016/j.bbmt.2016.10.016
  • Kantarjian HM, DiNardo CD, Nogueras-Gonzalez GM, et al. Results of second salvage therapy in 673 adults with acute myelogenous leukemia treated at a single institution since 2000. Cancer. 2018;124(12):2534–2540. doi:10.1002/cncr.31370
  • Cuglievan B, Connors J, He J, et al. Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent and venetoclax regimens. Haematologica. 2023;106(3):894–898. doi:10.1038/s41375-023-01968-z
  • Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126(3):291–299. doi:10.1182/blood-2015-01-621664
  • Stahl M, Tallman MS. Differentiation syndrome in acute promyelocytic leukaemia. Br J Haematol. 2019;187(2):157–162. doi:10.1111/bjh.16151
  • Fathi AT, DiNardo CD, Kline I, et al. Differentiation syndrome associated with enasidenib, a selective inhibitor of mutant isocitrate dehydrogenase 2: analysis of a phase 1/2 study. JAMA Oncol. 2018;4(8):1106–1110. doi:10.1001/jamaoncol.2017.4695
  • NCCN Clinical Practice Guidelines in Oncology™ Acute Myeloid Leukemia. Version 3.2022 [Internet]. Plymouth Meeting (PA): National Comprehensive Cancer Network; [cited 2023 Feb 13]. Available from: https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf
  • DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383(7):617–629. doi:10.1056/NEJMoa2012971
  • Stahl M, Menghrajani K, Derkach A, et al. Clinical and molecular predictors of response and survival following venetoclax therapy in relapsed/refractory AML. Blood Adv. 2021;5(5):1552–1564. doi:10.1182/bloodadvances.2020003734
  • Zhang H, Nakauchi Y, Köhnke T, et al. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. Nat Cancer. 2020;1(8):826–839. doi:10.1038/s43018-020-0103-x
  • Kuusanmäki H, Leppä AM, Pölönen P, et al. Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia. Haematologica. 2020;105(3):708–720. doi:10.3324/haematol.2018.214882
  • Pei S, Pollyea DA, Gustafson A, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov. 2020;10(4):536–551. doi:10.1158/2159-8290.CD-19-0710
  • ClinicalTrials.gov [Internet]. Bethesda (MD): U.S. National Library of Medicine; 2023. Available from: https://clinicaltrials.gov/ct2/show/NCT04905407
  • Kambhampati S, McMahon CM, Eghtedar A, et al. Initial results from SELECT-AML-1, a phase 2 study of tamibarotene in combination with venetoclax and azacitidine in RARA-positive newly diagnosed AML patients ineligible for standard induction chemotherapy. Blood. 2022;140(Suppl. 1):3333–3335. doi:10.1182/blood-2022-156564
  • ClinicalTrials.gov [Internet]. Bethesda (MD): U.S. National Library of Medicine; 2023. Available from: https://clinicaltrials.gov/ct2/show/NCT04797780