169
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Characteristics and therapeutic approaches for patients diagnosed with T-ALL/LBL exhibiting t(8;14)(q24;q11)/TCRA/D:MYC translocation

ORCID Icon, , , , ORCID Icon, , , , , , & show all
Pages 2133-2139 | Received 21 Feb 2023, Accepted 16 Aug 2023, Published online: 07 Sep 2023

References

  • Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16(8):494–507. doi:10.1038/nrc.2016.63
  • Litzow MR, Ferrando AA. How I treat T-cell acute lymphoblastic leukemia in adults. Blood. 2015;126(7):833–841. doi:10.1182/blood-2014-10-551895
  • Teachey DT, O'Connor D. How I treat newly diagnosed T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma in children. Blood. 2020;135(3):159–166. doi:10.1182/blood.2019001557
  • Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2016;2016(1):580–588. doi:10.1182/asheducation-2016.1.580
  • Jouvin-Marche E, Fuschiotti P, Marche PN. Dynamic aspects of TCRalpha gene recombination: qualitative and quantitative assessments of the TCRalpha chain repertoire in man and mouse. Adv Exp Med Biol. 2009;650:82–92. doi:10.1007/978-1-4419-0296-2_7
  • Skok JA, Gisler R, Novatchkova M, et al. Reversible contraction by looping of the tcra and tcrb loci in rearranging thymocytes. Nat Immunol. 2007;8(4):378–387. doi:10.1038/ni1448
  • Lange BJ, Raimondi SC, Heerema N, et al. Pediatric leukemia/lymphoma with t(8;14)(q24;q11). Leukemia. 1992; 6(7):613–618.
  • La Starza R, Borga C, Barba G, et al. Genetic profile of T-cell acute lymphoblastic leukemias with MYC translocations. Blood. 2014;124(24):3577–3582. doi:10.1182/blood-2014-06-578856
  • Parolini M, Mecucci C, Matteucci C, et al. Highly aggressive T-cell acute lymphoblastic leukemia with t(8;14)(q24;q11): extensive genetic characterization and achievement of early molecular remission and long-term survival in an adult patient. Blood Cancer J. 2014;4(1):e176–e176. doi:10.1038/bcj.2013.72
  • Tosello V, Milani G, Martines A, et al. A novel t(8;14)(q24;q11) rearranged human cell line as a model for mechanistic and drug discovery studies of NOTCH1-independent human T-cell leukemia. Cells. 2018;7(10):160. doi:10.3390/cells7100160
  • Schubbert S, Cardenas A, Chen H, et al. Targeting the MYC and PI3K pathways eliminates leukemia-initiating cells in T-cell acute lymphoblastic leukemia. Cancer Res. 2014;74(23):7048–7059. doi:10.1158/0008-5472.CAN-14-1470
  • Skalska-Sadowska J, Dawidowska M, Szarzyńska-Zawadzka B, et al. Translocation t(8;14)(q24;q11) with concurrent PTEN alterations and deletions of STIL/TAL1 and CDKN2A/B in a pediatric case of acute T-lymphoblastic leukemia: a genetic profile associated with adverse prognosis. Pediatr Blood Cancer. 2017;64(4):e26266. doi:10.1002/pbc.26266
  • Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–2405. doi:10.1182/blood-2016-03-643544
  • McGowan Jordan J, Simons A, Schmid M, et al. ISCN 2016: an international system for human cytogenomic nomenclature. Basel: S. Karger AG, 2016.
  • Chen X, Wang F, Zhang Y, et al. Panoramic view of common fusion genes in a large cohort of Chinese de novo acute myeloid leukemia patients. Leuk Lymphoma. 2019;60(4):1071–1078. doi:10.1080/10428194.2018.1516876
  • Chen X, Wang F, Zhang Y, et al. Retrospective analysis of 36 fusion genes in 2479 Chinese patients of de novo acute lymphoblastic leukemia. Leuk Res. 2018;72:99–104. doi:10.1016/j.leukres.2018.08.009
  • National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Version 2.2019 Acute Lymphoblastic Leukemia. 2019. https://www.nccn.org.
  • Cui L, Li ZG, Chai YH, et al. Outcome of children with newly diagnosed acute lymphoblastic leukemia treated with CCLG-ALL 2008: the first nation-wide prospective multicenter study in China. Am J Hematol. 2018;93(7):913–920. doi:10.1002/ajh.25124
  • Lu P, Liu Y, Yang J, et al. Naturally selected CD7 CAR-T therapy without genetic manipulations for T-ALL/LBL: first-in-human phase I clinical trial. Blood. 2022;140(4):321–334. doi:10.1182/blood.2021014498
  • den Hollander J, Rimpi S, Doherty JR, et al. Aurora kinases a and B are up-regulated by MYC and are essential for maintenance of the malignant state. Blood. 2010;116(9):1498–1505. doi:10.1182/blood-2009-11-251074
  • Guo W, Lasky JL, Chang CJ, et al. Multi-genetic events collaboratively contribute to pten-null leukaemia stem-cell formation. Nature. 2008;453(7194):529–533. doi:10.1038/nature06933
  • Langenau DM, Traver D, Ferrando AA, et al. MYC-induced T cell leukemia in transgenic zebrafish. Science. 2003;299(5608):887–890. doi:10.1126/science.1080280
  • Gutierrez A, Grebliunaite R, Feng H, et al. Pten mediates MYC oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia. J Exp Med. 2011;208(8):1595–1603. doi:10.1084/jem.20101691
  • Smith DP, Bath ML, Metcalf D, et al. MYC levels govern hematopoietic tumor type and latency in transgenic mice. Blood. 2006;108(2):653–661. doi:10.1182/blood-2006-01-0172
  • Reimann M, Loddenkemper C, Rudolph C, et al. The myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood. 2007;110(8):2996–3004. doi:10.1182/blood-2007-02-075614
  • Zindy F, Eischen CM, Randle DH, et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 1998;12(15):2424–2433. doi:10.1101/gad.12.15.2424
  • Saleh K, Michot JM, Camara-Clayette V, et al. Burkitt and Burkitt-like lymphomas: a systematic review. Curr Oncol Rep. 2020;22(4):33. doi:10.1007/s11912-020-0898-8
  • Patte C, Auperin A, Michon J, et al. The société française d‘Oncologie pédiatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood. 2001;97(11):3370–3379. doi:10.1182/blood.v97.11.3370
  • Cavè H, Suciu S, Preudhomme C, et al. Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and SIL-TAL fusion in childhood T-Cell malignancies: results of EORTC studies 58881 and 58951. Blood. 2004;103(2):442–450.
  • D'Angiò M, Valsecchi MG, Testi AM, et al. Clinical features and outcome of SIL/TAL1-positive T-cell acute lymphoblastic leukemia in children and adolescents: a 10-year experience of the AIEOP group. Haematologica. 2015;100(1):e10-3–e13. doi:10.3324/haematol.2014.112151
  • Wang D, Zhu G, Wang N, et al. SIL-TAL1 rearrangement is related with poor outcome: a study from a Chinese institution. PLoS One. 2013;8(9):e73865. doi:10.1371/journal.pone.0073865
  • Han SY, Kato H, Kato S, et al. Functional evaluation of PTEN missense mutations using in vitro phosphoinositide phosphatase assay. Cancer Res. 2000;60(12):3147–3151.
  • Bonnet M, Loosveld M, Montpellier B, et al. Posttranscriptional deregulation of MYC via PTEN constitutes a major alternative pathway of MYC activation in T-cell acute lymphoblastic leukemia. Blood. 2011;117(24):6650–6659. doi:10.1182/blood-2011-02-336842
  • Zhang W, Kuang P, Liu T. Prognostic significance of CDKN2A/B deletions in acute lymphoblastic leukaemia: a meta-analysis. Ann Med. 2019; 51(1):28–40. doi:10.1080/07853890.2018.1564359
  • Agarwal M, Bakhshi S, Dwivedi SN, et al. Cyclin dependent kinase inhibitor 2A/B gene deletions are markers of poor prognosis in Indian children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2018;65(6):e27001. doi:10.1002/pbc.27001
  • Kathiravan M, Singh M, Bhatia P, et al. Deletion of CDKN2A/B is associated with inferior relapse free survival in pediatric B cell acute lymphoblastic leukemia. Leuk Lymphoma. 2019;60(2):433–441. doi:10.1080/10428194.2018.1482542
  • Carrasco Salas P, Fernandez L, Vela M, et al. The role of CDKN2A/B deletions in pediatric acute lymphoblastic leukemia. Pediatr Hematol Oncol. 2016;33(7-8):415–422. doi:10.1080/08880018.2016.1251518
  • Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–1517. doi:10.1056/NEJMoa1407222
  • Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–448. doi:10.1056/NEJMoa1709866
  • Zhang X, Lu XA, Yang JF, et al. Efficacy and safety of anti-CD19 CAR-T cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv. 2020;4(10):2325–2338. doi:10.1182/bloodadvances.2020001466
  • Zhang M, Fu X, Zhang L, et al. First-in-human clinical trial of the autologous CD7-CAR-T for relapsed/refractory ACUTE lymphoblastic leukemia/lymphoma. J Clin Oncol. 2020;38(15_suppl):3026–3026. doi:10.1200/JCO.2020.38.15_suppl.3026
  • Pan J, Tan Y, Wang G, et al. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial. J Clin Oncol. 2021;39(30):3340–3351. doi:10.1200/JCO.21.00389
  • Xie L, Ma L, Liu S, et al. Chimeric antigen receptor T cells targeting CD7 in a child with high-risk T-cell acute lymphoblastic leukemia. Int Immunopharmacol. 2021;96:107731. doi:10.1016/j.intimp.2021.107731

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.