465
Views
26
CrossRef citations to date
0
Altmetric
Original Research

Binary DE-Based Channel Selection and Weighted Ensemble of SVM Classification for Novel Brain–Computer Interface Using Devanagari Script-Based P300 Speller Paradigm

, &

References

  • Acqualagna, L., & Blankertz, B. (2013). Gaze-independent BCI-spelling using rapid serial visual presentation (RSVP). Clinical Neurophysiology, 124(5), 901–908.
  • Acqualagna, L., Treder, M. S., Schreuder, M., & Blankertz, B. (2010). A novel brain-computer interface based on the rapid serial visual presentation paradigm. Paper presented at the IEEE Engineering in Medicine and Biology Society, Buenos Aires, August 31–September 4.
  • Akcakaya, M., Peters, B., Moghadamfalahi, M., Mooney, A. R., Orhan, U., Oken, B., … Fried-Oken, M. (2014). Noninvasive brain–computer interfaces for augmentative and alternative communication. IEEE Reviews in Biomedical Engineering, 7, 31–49.
  • Allison, B. Z., & Pineda, J. A. (2003). ERPs evoked by different matrix sizes: Implications for a brain computer interface (BCI) system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 1 (2), 110–113.
  • Allison, B. Z., & Pineda, J. A. (2006). Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: Implications for a BCI system. International Journal of Psychophysiology, 59(2), 127–140.
  • Andrews, S., Palaniappan, R., Teoh, A., & Chu Kiong, L. (2008). Enhancing P300 component by spectral power ratio principal components for a single trial brain-computer interface. American Journal of Applied Sciences, 5(6), 639–644.
  • Bayliss, J. D., & Ballard, D. H. (2000). A virtual reality testbed for brain-computer interface research. IEEE Transactions on Rehabilitation Engineering, 8(2), 188–190.
  • Bayliss, J. D., Inverso, S. A., & Tentler, A. (2004). Changing the P300 brain computer interface. CyberPsychology & Behavior, 7(6), 694–704.
  • Bell, C. J., Shenoy, P., Chalodhorn, R., & Rao, R. P. (2008). Control of a humanoid robot by a noninvasive brain–computer interface in humans. Journal of Neural Engineering, 5(2), 214–220.
  • Beverina, F., Palmas, G., Silvoni, S., Piccione, F., & Giove, S. (2003). User adaptive BCIs: SSVEP and P300 based interfaces. PsychNology Journal, 1(4), 331–354.
  • Bhagwani, H., & Chaurasiya, R. K. (2016). Step wise LDA on averaged ERPS for faster and efficient brain-computer interfacing. Paper presented at the 2nd IEEE International Conference on Human–Computer Interactions (ICHCI’16), Chennai, India, March 10–11.
  • Bhatnagar, V., Yede, N., Keram, R. S., & Chaurasiya, R. K. (2016). A modified approach to ensemble of SVM for P300 based brain computer interface. Paper presented at the 2016 International Conference on Advances in Human Machine Interaction (HMI), Doddaballapur, Bangalore, India, March 3–5.
  • Bianchi, L., Sami, S., Hillebrand, A., Fawcett, I. P., Quitadamo, L. R., & Seri, S. (2010). Which physiological components are more suitable for visual ERP based brain–computer interface? A preliminary MEG/EEG study. Brain Topography, 23(2), 180–185.
  • Bießmann, F. (2007). Error Correcting Codes for the P300 Visual Speller. Doctoral dissertation, Eberhard-Karls-University Tübingen.
  • Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford, UK: Oxford University Press.
  • Blankertz, B., Lemm, S., Treder, M., Haufe, S., & Müller, K.-R. (2011). Single-trial analysis and classification of ERP components—A tutorial. Neuroimage, 56(2), 814–825.
  • Blankertz, B., Losch, F., Krauledat, M., Dornhege, G., Curio, G., & Muller, K. R. (2008). The Berlin brain–computer interface: Accurate performance from first-session in BCI-naive subjects. IEEE Transactions on Biomedical Engineering, 55(10), 2452–2462.
  • Blankertz, B., Muller, K. R., Krusienski, D. J., Schalk, G., Wolpaw, J. R., Schlogl, A., … Birbaumer, N. (2006). The BCI competition. III: Validating alternative approaches to actual BCI problems. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 14(2), 153–159.
  • Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226, 177–178.
  • Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.
  • Cecotti, H. (2015). Toward shift invariant detection of event-related potentials in non-invasive brain–computer interface. Pattern Recognition Letters, 66, 127–134.
  • Cecotti, H., & Graser, A. (2011). Convolutional neural networks for P300 detection with application to brain–computer interfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(3), 433–445.
  • Chang, M. H., Lee, J. S., Heo, J., & Park, K. S. (2016). Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI. Journal of Neuroscience Methods, 258, 104–113.
  • Chaurasiya, R. K., Londhe, N. D., & Ghosh, S. (2015). An efficient P300 speller system for brain-computer interface. Paper presented at the IEEE International Conference on Signal Processing, Computing and Control (ISPCC), JUIT Solan, India, September 24–26.
  • Chen, Y., Xie, W., & Zou, X. (2015). A binary differential evolution algorithm learning from explored solutions. Neurocomputing, 149, 1038–1047.
  • Citi, L., Poli, R., Cinel, C., & Sepulveda, F. (2008). P300-based BCI mouse with genetically-optimized analogue control. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 16(1), 51–61.
  • Colwell, K. A., Ryan, D. B., Throckmorton, C. S., Sellers, E. W., & Collins, L. M. (2014). Channel selection methods for the P300 Speller. Journal of Neuroscience Methods, 232, 6–15.
  • Combaz, A., Chumerin, N., Manyakov, N. V., Robben, A., Suykens, J. A., & Van Hulle, M. M. (2012). Towards the detection of error-related potentials and its integration in the context of a P300 speller brain–computer interface. Neurocomputing, 80, 73–82.
  • Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31.
  • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7, 1–30.
  • Donchin, E. (1981). Presidential address, 1980. Surprise!…Surprise? Psychophysiology, 18(5), 493–513.
  • Draper, N. R., & Smith, H. (2014). Applied regression analysis. Hoboken, NJ: John Wiley & Sons.
  • Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6), 510–523.
  • Fazel, R. (2011). Recent advances in brain–computer interface systems. InTech.
  • Fazel-Rezai, R., & Abhari, K. (2008). A comparison between a matrix-based and a region-based P300 speller paradigms for brain–computer interface. Paper presented at the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, August 20–25.
  • Fazel-Rezai, R., & Abhari, K. (2009). A region-based P300 speller for brain-computer interface. Canadian Journal of Electrical and Computer Engineering, 34(3), 81–85.
  • Fazel-Rezai, R., Allison, B. Z., Guger, C., Sellers, E. W., Kleih, S. C., & Kubler, A. (2012). P300 brain computer interface: Current challenges and emerging trends. Frontiers in Neuroengineering, 5, 14.
  • Feng, C., Jiang, Y., & He, S. (2007). Horizontal and vertical asymmetry in visual spatial crowding effects. Journal of Vision, 7(2), 13–13.
  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188.
  • Gao, W., Guan, J.-A., Gao, J., & Zhou, D. (2015). Multi-ganglion ANN based feature learning with application to P300-BCI signal classification. Biomedical Signal Processing and Control, 18, 127–137.
  • Guan, C., Thulasidas, M., & Wu, J. (2004). High performance P300 speller for brain-computer interface. Paper presented at the 2004 IEEE International Workshop on Biomedical Circuits and Systems, December 1–3.
  • Hill, J., Farquhar, J., Martens, S., Bießmann, F., & Schölkopf, B. (2009). Effects of stimulus type and of error-correcting code design on BCI speller performance. Paper presented at the Advances in Neural Information Processing Systems.
  • Hoffmann, U., Vesin, J.-M., Ebrahimi, T., & Diserens, K. (2008). An efficient P300-based brain–computer interface for disabled subjects. Journal of Neuroscience Methods, 167 (1), 115–125.
  • Huang, A., & Zhou, W. (2008). BLDA approach for classifying p300 potential. Paper presented at the 7th Asian–Pacific Conference on Medical and Biological Engineering, Beijing, China, April 22–25.
  • Hwang, H.-J., Kim, S., Choi, S., & Im, C.-H. (2013). EEG-based brain-computer interfaces: A thorough literature survey. International Journal of Human–Computer Interaction, 29(12), 814–826.
  • Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 4–37.
  • Jin, J., Allison, B. Z., Brunner, C., Wang, B., Wang, X., Zhang, J., … Pfurtscheller, G. (2010). P300 Chinese input system based on Bayesian LDA. Biomedizinische Technik/Biomedical Engineering, 55(1), 5–18.
  • Jin, J., Allison, B. Z., Sellers, E. W., Brunner, C., Horki, P., Wang, X., & Neuper, C. (2011). Optimized stimulus presentation patterns for an event-related potential EEG-based brain–computer interface. Medical & Biological Engineering & Computing, 49(2), 181–191.
  • Jin, J., Sellers, E. W., & Wang, X. (2012). Targeting an efficient target-to-target interval for P300 speller brain-computer interfaces. Medical & Biological Engineering & Computing, 50(3), 289–296.
  • Jung, T. P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2001). Analysis and visualization of single‐trial event‐related potentials. Human Brain Mapping, 14(3), 166–185.
  • Kabbara, A., Hassan, M., Khalil, M., Eid, H., & El-Falou, W. (2015). An efficient P300-speller for Arabic letters. Paper presented at the 2015 International Conference on Advances in Biomedical Engineering (ICABME) Beirut, Lebanon, September 16–18.
  • Kaper, M., Meinicke, P., Grossekathoefer, U., Lingner, T., & Ritter, H. (2004). BCI Competition 2003–Data set IIb: Support vector machines for the P300 speller paradigm. IEEE Transactions on Biomedical Engineering, 51(6), 1073–1076.
  • Kaufmann, T., Schulz, S. M., Köblitz, A., Renner, G., Wessig, C., & Kübler, A. (2013). Face stimuli effectively prevent brain–computer interface inefficiency in patients with neurodegenerative disease. Clinical Neurophysiology, 124(5), 893–900.
  • Kee, C. Y., Chetty, R. K., Khoo, B. H., & Ponnambalam, S. (2012). Genetic algorithm and Bayesian linear discriminant analysis based channel selection method for P300 BCI trends in intelligent robotics, automation, and manufacturing (pp. 226–235). Berlin: Springer-Verlag.
  • Kee, C.-Y., Ponnambalam, S., & Loo, C.-K. (2015). Multi-objective genetic algorithm as channel selection method for P300 and motor imagery data set. Neurocomputing, 161, 120–131.
  • Kim, H.-C., Pang, S., Je, H.-M., Kim, D., & Bang, S.-Y. (2002). Support vector machine ensemble with bagging. In Pattern recognition with support vector machines, First International Workshop, SVM 2002 (pp. 397–408). Springer.
  • Kindermans, P. J., Verstraeten, D., & Schrauwen, B. (2012). A bayesian model for exploiting application constraints to enable unsupervised training of a P300-based BCI. PLoS One, 7(4), e33758.
  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Paper presented at the IJCAI, August 20.
  • Krusienski, D. J., Sellers, E. W., Cabestaing, F., Bayoudh, S., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2006). A comparison of classification techniques for the P300 Speller. Journal of Neural Engineering, 3(4), 299–305.
  • Krusienski, D. J., Sellers, E. W., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2008). Toward enhanced P300 speller performance. Journal of Neuroscience Methods, 167(1), 15–21.
  • Lal, T. N., Schroder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., & Scholkopf, B. (2004). Support vector channel selection in BCI. IEEE Transactions on Biomedical Engineering, 51(6), 1003–1010.
  • Li, K., Sankar, R., Arbel, Y., & Donchin, E. (2009). Single trial independent component analysis for P300 BCI system. Paper presented at the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, September 3–6.
  • Li, Y., Guan, C., Li, H., & Chin, Z. (2008). A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system. Pattern Recognition Letters, 29(9), 1285–1294.
  • Li, Y., Nam, C. S., Shadden, B. B., & Johnson, S. L. (2010). A P300-based brain–computer interface: Effects of interface type and screen size. International Journal of Human–Computer Interaction, 27(1), 52–68.
  • Long, J., Gu, Z., Li, Y., Yu, T., Li, F., & Fu, M. (2011). Semi-supervised joint spatio-temporal feature selection for P300-based BCI speller. Cognitive Neurodynamics, 5(4), 387–398.
  • Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., & Arnaldi, B. (2007). A review of classification algorithms for EEG-based brain–computer interfaces. Journal of Neural Engineering, 4(2), R1–R13.
  • Minett, J. W., Zheng, H.-Y., Fong, M. C., Zhou, L., Peng, G., & Wang, W. S. (2012). A Chinese text input brain–computer interface based on the P300 speller. International Journal of Human–Computer Interaction, 28(7), 472–483.
  • Ming, D., An, X., Xi, Y., Hu, Y., Wan, B., Qi, H., … Xue, Z. (2010). Time-locked and phase-locked features of P300 event-related potentials (ERPs) for brain–computer interface speller. Biomedical Signal Processing and Control, 5(4), 243–251.
  • Mirghasemi, H., Fazel-Rezai, R., & Shamsollahi, M. (2006). Analysis of P300 classifiers in brain computer interface speller. Paper presented at the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, August 30–September 3.
  • Nemenyi, P. (1962). Distribution-free multiple comparisons. Paper presented at the Biometrics, Washington, DC.
  • Palaniappan, R., Paramesran, R., Nishida, S., & Saiwaki, N. (2002). A new brain-computer interface design using fuzzy ARTMAP. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(3), 140–148.
  • Pampará, G., Engelbrecht, A. P., & Franken, N. (2006). Binary differential evolution. Paper presented at the IEEE Congress on Evolutionary Computation, Vancouver, BC, July 16–21.
  • Paolillo, J. C., & Das, A. (2006). Evaluating language statistics: The Ethnologue and beyond. Contract report for UNESCO Institute for Statistics. Montreal, Canada: UNESCO Institute for Statistics.
  • Piccione, F., Giorgi, F., Tonin, P., Priftis, K., Giove, S., Silvoni, S., … Beverina, F. (2006). P300-based brain computer interface: Reliability and performance in healthy and paralysed participants. Clinical Neurophysiology, 117(3), 531–537.
  • Pritchard, W. S. (1981). Psychophysiology of P300. Psychological Bulletin, 89(3), 506–540.
  • Rakotomamonjy, A., & Guigue, V. (2008). BCI competition III: Dataset II- ensemble of SVMs for BCI P300 speller. IEEE Transactions on Biomedical Engineering, 55(3), 1147–1154.
  • Ralescu, A., Wang, M., Chaganti, S., & Han, Q. (2014). A dynamic P300-based BCI speller using a language model. International Journal of Advanced Intelligence Paradigms, 6(1), 1–13.
  • Rivet, B., Cecotti, H., Maby, E., & Mattout, J. (2012). Impact of spatial filters during sensor selection in a visual P300 brain–computer interface. Brain Topography, 25(1), 55–63.
  • Rivet, B., Souloumiac, A., Attina, V., & Gibert, G. (2009). xDAWN algorithm to enhance evoked potentials: Application to brain–computer interface. IEEE Transactions on Biomedical Engineering, 56(8), 2035–2043.
  • Ryan, D. B., Frye, G., Townsend, G., Berry, D., Mesa-G, S., Gates, N. A., & Sellers, E. W. (2010). Predictive spelling with a P300-based brain–computer interface: Increasing the rate of communication. International Journal of Human–Computer Interaction, 27(1), 69–84.
  • Salvaris, M., & Sepulveda, F. (2009). Visual modifications on the P300 speller BCI paradigm. Journal of Neural Engineering, 6(4), 046011.
  • Sanei, S., & Chambers, J. A. (2013). EEG signal processing. London: John Wiley & Sons.
  • Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., & Wolpaw, J. R. (2004). BCI2000: A general-purpose brain–computer interface (BCI) system. IEEE Transactions on Biomedical Engineering, 51(6), 1034–1043.
  • Schröder, M., Lal, T. N., Hinterberger, T., Bogdan, M., Hill, N. J., Birbaumer, N., … Schölkopf, B. (2005). Robust EEG channel selection across subjects for brain–computer interfaces. EURASIP Journal on Advances in Signal Processing, 2005, 3103–3112.
  • Sellers, E. W., & Donchin, E. (2006). A P300-based brain–computer interface: Initial tests by ALS patients. Clinical Neurophysiology, 117(3), 538–548.
  • Sellers, E. W., Krusienski, D. J., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2006). A P300 event-related potential brain–computer interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biological Psychology, 73(3), 242–252.
  • Serby, H., Yom-Tov, E., & Inbar, G. F. (2005). An improved P300-based brain–computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(1), 89–98.
  • Speier, W., Arnold, C., Lu, J., Deshpande, A., & Pouratian, N. (2014). Integrating language information with a hidden Markov model to improve communication rate in the P300 speller. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(3), 678–684.
  • Speier, W., Deshpande, A., & Pouratian, N. (2015). A method for optimizing EEG electrode number and configuration for signal acquisition in P300 speller systems. Clinical Neurophysiology, 126(6), 1171–1177.
  • Storn, R., & Price, K. (1995). Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces (vol. 3). Berkeley, CA: ICSI Berkeley.
  • Strasburger, H. (2005). Unfocussed spatial attention underlies the crowding effect in indirect form vision. Journal of Vision, 5(11), 8–8.
  • Syan, C. S., & Harnarinesingh, R. E. (2010). Comparison of pre-processing and classification techniques for single-trial and multi-trial P300-based brain computer interfaces. American Journal of Applied Sciences, 7(9), 1219.
  • Theodoridis, S., & Koutroumbas, K. (2008). Pattern recognition (4th ed.). New York: Academic Press.
  • Thulasidas, M., Guan, C., & Wu, J. (2006). Robust classification of EEG signal for brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(1), 24–29.
  • Townsend, G., LaPallo, B., Boulay, C., Krusienski, D., Frye, G., Hauser, C., … Sellers, E. W. (2010). A novel P300-based brain–computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clinical Neurophysiology, 121(7), 1109–1120.
  • Turnip, A., & Hong, K.-S. (2012). Classifying mental activities from EEG-P300 signals using adaptive neural network. International Journal Innov Comparative Information Control, 8(9), 6429–6443.
  • Vesterstrøm, J., & Thomsen, R. (2004). A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. Paper presented at the 2004 Congress on Evolutionary Computation, June 19–23.
  • Wang, L., Fu, X., Mao, Y., Menhas, M. I., & Fei, M. (2012). A novel modified binary differential evolution algorithm and its applications. Neurocomputing, 98, 55–75.
  • Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791.
  • Xu, M., Qi, H., Ma, L., Sun, C., Zhang, L., Wan, B., … Patterson, R. L. (2013). Channel selection based on phase measurement in P300-based brain–computer interface. PLoS One, 8(4), e60608.
  • Xu, N., Gao, X., Hong, B., Miao, X., Gao, S., & Yang, F. (2004). BCI competition 2003-data set IIb: Enhancing P 300 wave detection using ICA-based subspace projections for BCI applications. IEEE Transactions on Biomedical Engineering, 51(6), 1067–1072.
  • Yamamoto, Y., Yoshikawa, T., & Furuhashi, T. (2015). Improvement of performance of Japanese P300 speller by using second display. Journal of Artificial Intelligence and Soft Computing Research, 5(3), 221–226.
  • Zhang, J.-C., Xu, Y.-Q., & Yao, L. (2007). P300 detection using boosting neural networks with application to BCI. Paper presented at the IEEE/ICME International Conference on Complex Medical Engineering Beijing, China, May 23–27.
  • Zhang, Y., Zhou, G., Jin, J., Wang, X., & Cichocki, A. (2014a). Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. International Journal of Neural Systems, 24(04), 1450013.
  • Zhang, Y., Zhou, G., Jin, J., Zhao, Q., Wang, X., & Cichocki, A. (2014b). Aggregation of sparse linear discriminant analyses for event-related potential classification in brain-computer interface. International Journal of Neural Systems, 24(01), 1450003.
  • Zhang, Y., Zhou, G., Jin, J., Zhao, Q., Wang, X., & Cichocki, A. (2015). Sparse bayesian classification of EEG for brain–computer interface. IEEE Transactions on Neural Networks and Learning Systems.
  • Zhang, Y., Zhou, G., Zhao, Q., Jin, J., Wang, X., & Cichocki, A. (2013). Spatial-temporal discriminant analysis for ERP-based brain–computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 233–243.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.