658
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Freehand-Steering Locomotion Techniques for Immersive Virtual Environments: A Comparative Evaluation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &

References

  • Al Zayer, M., MacNeilage, P., & Folmer, E. (2020). Virtual Locomotion: A Survey. IEEE Transactions on Visualization and Computer Graphics, 26(6), 2315–2334. https://doi.org/https://doi.org/10.1109/TVCG.2018.2887379
  • Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual sus scores mean: Adding an adjective rating scale. Journal of Usability Studies, 4(3), 114–123. https://uxpajournal.org/determining-what-individual-sus-scores-mean-adding-an-adjective-rating-scale/#:~:text=Analysis%20of%20nearly%201%2C000%20SUS,to%20non%2Dhuman%20factors%20professionals
  • Beattie, K. L., & Morrison, B. W. (2019). Navigating the online world: Gaze, fixations, and performance differences between younger and older users. International Journal of Human–Computer Interaction, 35(16), 1487–1500. https://doi.org/https://doi.org/10.1080/10447318.2018.1541545
  • Boletsis, C. (2017). The new era of virtual reality locomotion: A systematic literature review of techniques and a proposed typology. Multimodal Technologies and Interaction, 1(4), 24. https://doi.org/https://doi.org/10.3390/mti1040024
  • Boletsis, C., & Cedergren, J. E. (2019). VR locomotion in the new Era of virtual reality: An empirical comparison of prevalent techniques. Advances in Human-Computer Interaction, 2019, 7420781. https://doi.org/https://doi.org/10.1155/2019/7420781
  • Boletsis, C., Cedergren, J. E., & Kongsvik, S. (2017). HCI research in virtual reality: A discussion of problem-solving. In International conference on interfaces and human computer interaction, ihci 2017, Portugal, 21–23 july 2017.
  • Borrego, A., Latorre, J., Llorens, R., Alcañiz, M., & Noé, E. (2016). Feasibility of a walking virtual reality system for rehabilitation: Objective and subjective parameters. Journal of Neuroengineering and Rehabilitation, 13(1), 68. https://doi.org/https://doi.org/10.1186/s12984-016-0174-1
  • Bowman, D. A., Johnson, D. B., & Hodges, L. F. (1999). Testbed evaluation of virtual environment interaction techniques. In Proceedings of the ACM symposium on virtual reality software and technology (pp. 26–33). Association for Computing Machinery (ACM).
  • Bowman, D. A., Koller, D., & Hodges, L. F. (1997, March). Travel in immersive virtual environments: An evaluation of viewpoint motion control techniques. In Proceedings of IEEE 1997 annual international symposium on virtual reality (pp. 45–52). IEEE.
  • Bowman, D. A., Koller, D., & Hodges, L. F. (1998, June). A methodology for the evaluation of travel techniques for immersive virtual environments. Virtual Reality, 3(2), 120–131. https://doi.org/https://doi.org/10.1007/BF01417673
  • Bowman, D. A., Kruijff, E., LaViola, J. J., & Poupyrev, I. (2004). 3d user interfaces: Theory and practice. Addison Wesley Longman Publishing Co., Inc.
  • Bozgeyikli, E., Raij, A., Katkoori, S., & Dubey, R. (2016). Point & Teleport Locomotion Technique for Virtual Reality. In Proceedings of the 2016 annual symposium on computer- human interaction in play (pp. 205–216). Elsevier.
  • Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59. https://doi.org/https://doi.org/10.1016/0005-7916(94)90063-9
  • Brogan, D. C., Metoyer, R. A., & Hodgins, J. K. (1998, September). Dynamically simulated characters in virtual environments. IEEE Computer Graphics and Applications, 18(5), 58–69. https://doi.org/https://doi.org/10.1109/38.708561
  • Brooke, J. (1996). Sus-a quick and dirty usability scale. Usability Evaluation in Industry, 189(194), 4–7.
  • Brooke, J. (2013). Sus: A retrospective. Journal of Usability Studies, 8(2), 29–40.
  • Brooks, F. P. (1999, November). What’s real about virtual reality? IEEE Computer Graphics and Applications, 19(6), 16–27. https://doi.org/https://doi.org/10.1109/38.799723
  • Bruder, G., & Steinicke, F. (2014). Threefolded motion perception during immersive walkthroughs. In Proceedings of the 20th ACM symposium on virtual reality software and technology (pp. 177–185). Association for Computing Machinery (ACM). https://doi.org/https://doi.org/10.1145/2671015.2671026
  • Buckwald, M., & Holz, D. (2010). The Leap Motion 3D Controller. https://www.leapmotion.com/.
  • Bustamante, E. A., & Spain, R. D. (2008). Measurement invariance of the nasa tlx. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 52, pp. 1522–1526). Human Factors & Ergonomic.
  • Caggianese, G., Gallo, L., & Neroni, P. (2016). An investigation of leap motion based 3d manipulation techniques for use in egocentric viewpoint. In L. T. De Paolis & A. Mongelli (Eds.), Augmented reality, virtual reality, and computer graphics (pp. 318–330). Springer International Publishing.
  • Caggianese, G., Gallo, L., & Neroni, P. (2019). The vive controllers vs. leap motion for interactions in virtual environments: A comparative evaluation. In G. De Pietro, L. Gallo, R. J. Howlett, L. C. Jain, & L. Vlacic (Eds.), Intelligent interactive multimedia systems and services (pp. 24–33). Springer International Publishing.
  • Caggianese, G., Gallo, L., & Neroni, P. (2015). Design and preliminary evaluation of free-hand travel techniques for wearable immersive virtual reality systems with egocentric sensing. In Proceedings of the second international conference on augmented and virtual reality – Volume 9254 (pp. 399–408). Springer.
  • Capece, N., Erra, U., & Mirauda, D. (2019). StreamFlowVR: A Tool for Learning Methodolo-gies and Measurement Instruments for River Flow Through Virtual Reality. In L. T. De Paolis & P. Bourdot (Eds.), Augmented reality, virtual reality, and computer graphics (pp. 456–471). Springer International Publishing.
  • Capece, N., Erra, U., & Grippa, J. (2018). Graphvr: A virtual reality tool for the exploration of graphs with htc vive system. In 2018 22nd international conference information visualisation (iv) (pp. 448–453). IEEE.
  • Cardoso, J. C. S. (2016). Comparison of Gesture, Gamepad, and Gaze-based Locomotion for VR Worlds. In Proceedings of the 22nd ACM conference on virtual reality software and technology (pp. 319–320). Association for Computing Machinery (ACM).
  • Carrozzino, M., Avveduto, G., Tecchia, F., Gurevich, P., & Cohen, B. (2014). Navigating immersive virtual environments through a foot controller. In Proceedings of the 20th ACM symposium on virtual reality software and technology (pp. 23–26). Association for Computing Machinery (ACM).
  • Choe, M., Choi, Y., Park, J., & Kim, H. K. (2019). Comparison of gaze cursor input methods for virtual reality devices. International Journal of Human–Computer Interaction, 35(7), 620–629. https://doi.org/https://doi.org/10.1080/10447318.2018.1484054
  • Christou, C., Tzanavari, A., Herakleous, K., & Poullis, C. (2016, April). Navigation in virtual reality: Comparison of gaze-directed and pointing motion control. In 2016 18th mediterranean electrotechnical conference (MELECON) (pp. 1–6). IEEE.
  • Christou, C. G., & Aristidou, P. (2017). Steering versus teleport locomotion for head mounted displays. In International conference on augmented reality, virtual reality and computer graphics (pp. 431–446). Springer.
  • Cruz-Neira, C., Sandin, D. J., & DeFanti, T. A. (1993). Surround-screen Projection-based Virtual Reality: The Design and Implementation of the CAVE. In Proceedings of the 20th annual conference on computer graphics and interactive techniques (pp. 135–142). New York, NY, USA: ACM.
  • de Haan, G., Griffith, E. J., & Post, F. H. (2008). Using the Wii balance board™ As a low-cost VR interaction device. In Proceedings of the 2008 acm symposium on virtual reality software and technology (pp. 289–290). New York, NY, USA: ACM.
  • Del Bimbo, A., Ferracani, A., Pezzatini, D., & Seidenari, L. (2017). Natural interaction in medical training: Tools and applications. Springer.
  • Erra, U., Malandrino, D., & Pepe, L. (2019). Virtual reality interfaces for interacting with three-dimensional graphs. International Journal of Human–Computer Interaction, 35(1), 75–88. https://doi.org/https://doi.org/10.1080/10447318.2018.1429061
  • Ferracani, A., Pezzatini, D., Bianchini, J., Biscini, G., & Del Bimbo, A. (2016). Locomotion by natural gestures for immersive virtual environments. In Proceedings of the 1st international workshop on multimedia alternate realities (pp. 21–24). New York, NY, USA: ACM.
  • Frøkjær, E., Hertzum, M., & Hornbæk, K. (2000). Measuring usability: Are effectiveness, efficiency, and satisfaction really correlated? In Proceedings of the sigchi conference on human factors in computing systems (pp. 345–352). The Hague, The Netherlands.
  • Frommel, J., Sonntag, S., & Weber, M. (2017). Effects of controller-based locomotion on player experience in a virtual reality exploration game. In Proceedings of the 12th international conference on the foundations of digital games (pp. 30: 1–30:6). New York, NY, USA: ACM.
  • Guy, E., Punpongsanon, P., Iwai, D., Sato, K., & Boubekeur, T. (2015). LazyNav: 3D ground navigation with non-critical body parts. In 2015 IEEE symposium on 3d user interfaces (3dui) (pp. 43–50). Arles, France.
  • Hart, S. G. (2006). NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 50, pp. 904–908).
  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139–183). Elsevier.
  • ISO9241-11. (1998). Ergonomic requirements for office work with visual display terminals (VDTs) Part 11: Guidance on usability. International Organization for Standardization (ISO). https://www.iso.org/standard/16883.html.
  • Jerald, J. (2015). The VR book: Human-centered design for virtual reality. Morgan & Claypool.
  • Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203–220. https://doi.org/https://doi.org/10.1207/s15327108ijap0303_3
  • Kitson, A., Hashemian, A. M., Stepanova, E. R., Kruijff, E., & Riecke, B. E. (2017, March). Comparing leaning-based motion cueing interfaces for virtual reality locomotion. In 2017 IEEE symposium on 3d user interfaces (3dui) (p. 73–82). Los Angeles, CA.
  • Kitson, A., Riecke, B. E., Hashemian, A. M., & Neustaedter, C. (2015). NaviChair: Evaluating an embodied interface using a pointing task to navigate virtual reality. In Proceedings of the 3rd acm symposium on spatial user interaction (pp. 123–126). Los Angeles, CA.
  • Kolasinski, E. M. (1995). Simulator sickness in virtual environments (Vol. 1027). US Army, Research Institute for the Behavioral and Social Sciences..
  • Langbehn, E., Eichler, T., Ghose, S., von Luck, K., Bruder, G., & Steinicke, F. (2015). Evaluation of an omnidirectional walking-in-place user interface with virtual locomotion speed scaled by forward leaning angle. In Proceedings of the gi workshop on virtual and augmented reality (gi vr/ar) (pp. 149–160).
  • Langbehn, E., Lubos, P., & Steinicke, F. (2018). Evaluation of Locomotion Techniques for Room-Scale VR: Joystick, Teleportation, and Redirected Walking. In Proceedings of the virtual reality international conference - laval virtual (pp. 4: 1–4:9). New York, NY, USA: ACM.
  • LaViola, J. J., Jr. (2000). A discussion of cybersickness in virtual environments. ACM Sigchi Bulletin, 32(1), 47–56. https://doi.org/https://doi.org/10.1145/333329.333344
  • LaViola, J. J., Jr., Feliz, D. A., Keefe, D. F., & Zeleznik, R. C. (2001). Hands-free Multi-scale Navigation in Virtual Environments. In Proceedings of the 2001 symposium on interactive 3d graphics (pp. 9–15). New York, NY, USA: ACM.
  • LaViola, J. J., Jr, Kruijff, E., McMahan, R. P., Bowman, D., & Poupyrev, I. P. (2017). 3d user interfaces: Theory and practice. Addison-Wesley Professional.
  • Loup, G., & Loup-Escande, E. (2019). Effects of travel modes on performances and user comfort: A comparison between armswinger and teleporting. International Journal of Human–Computer Interaction, 35(14), 1270–1278. https://doi.org/https://doi.org/10.1080/10447318.2018.1519164
  • Microsoft Kinect. (2010). http://www.microsoft.com/en-us/kinectforwindows/.
  • Mine, M. R. (1995). Virtual environment interaction techniques. UNC Chapel Hill CS Dept.
  • Moro, C., Štromberga, Z., Raikos, A., & Stirling, A. (2017). The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anatomical Sciences Education, 10(6), 549–559. https://doi.org/https://doi.org/10.1002/ase.1696
  • Nabiyouni, M., Saktheeswaran, A., Bowman, D. A., & Karanth, A. (2015, March). Comparing the performance of natural, semi-natural, and non-natural locomotion techniques in virtual reality. In 2015 IEEE symposium on 3d user interfaces (3dui) (p. 3–10). Arles, France.
  • Peer, A., & Ponto, K. (2017, March). Evaluating perceived distance measures in room-scale spaces using consumer-grade head mounted displays. In 2017 IEEE symposium on 3d user interfaces (3dui) (p. 83–86). Los Angeles, CA.
  • Romano, S., Capece, N., Erra, U., Scanniello, G., & Lanza, M. (2019). On the use of virtual reality in software visualization: The case of the city metaphor. Information and Software Technology, 114, 92–106. https://doi.org/https://doi.org/10.1016/j.infsof.2019.06.007
  • Ruddle, R. A., & Lessels, S. (2009, April). The Benefits of Using a Walking Interface to Navigate Virtual Environments. ACM Transactions on Computer-Human Interaction, 16(1), 1–8. https://doi.org/https://doi.org/10.1145/1502800.1502805
  • Sauro, J. (2011). A practical guide to the system usability scale: Background, benchmarks & best practices. Measuring Usability LLC.
  • Sauro, J. (2012). 10 things to know about the single ease question (seq). Measuring U, 2012.
  • Sauro, J., & Dumas, J. S. (2009). Comparison of three one-question, post-task usability questionnaires. In Proceedings of the sigchi conference on human factors in computing systems (pp. 1599–1608). Boston, MA.
  • Sayers, H. (2004). Desktop virtual environments: A study of navigation and age. Interacting with Computers, 16(5), 939–956. https://doi.org/https://doi.org/10.1016/j.intcom.2004.05.003
  • Skopp, N. A., Smolenski, D. J., Metzger-Abamukong, M. J., Rizzo, A. A., & Reger, G. M. (2014). A pilot study of the virtusphere as a virtual reality enhancement. International Journal of Human-computer Interaction, 30(1), 24–31. https://doi.org/https://doi.org/10.1080/10447318.2013.796441
  • Slater, M., Steed, A., & Usoh, M. (1995). The Virtual Treadmill: A Naturalistic Metaphor for Navigation in Immersive Virtual Environments. In M. Göbel (Ed.), Virtual environments ‘95 (pp. 135–148). Springer Vienna.
  • Stanney, K. M., Kennedy, R. S., & Drexler, J. M. (1997). Cybersickness is not simulator sickness. In Proceedings of the human factors and ergonomics society annual meeting (Vol.41, pp. 1138–1142).
  • Stellmach, S., & Dachselt, R. (2012). Designing Gaze-based User Interfaces for Steering in Virtual Environments. In Proceedings of the symposium on eye tracking research and applications (pp. 131–138). New York, NY, USA: ACM.
  • Stoakley, R., Conway, M. J., & Pausch, R. (1995). Virtual reality on a WIM: Interactive worlds in miniature. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’95) (pp. 265–272). USA: ACM Press/Addison-Wesley Publishing Co. https://doi.org/https://doi.org/10.1145/223904.223938
  • Suma, E. A., Finkelstein, S. L., Clark, S., Goolkasian, P., & Hodges, L. F. (2010, March). Effects of travel technique and gender on a divided attention task in a virtual environment. In 2010 IEEE symposium on 3d user interfaces (3dui) (p. 27–34). Waltham, MA.
  • Suma, E. A., Finkelstein, S. L., Reid, M., Ulinski, A., & Hodges, L. F. (2009, March). Real Walking Increases Simulator Sickness in Navigationally Complex Virtual Environments. In 2009 IEEE virtual reality conference (p. 245–246). Lafayette, LA.
  • Sun, H.-M., Li, S.-P., Zhu, Y.-Q., & Hsiao, B. (2015). The effect of user’s perceived presence and promotion focus on usability for interacting in virtual environments. Applied Ergonomics, 50, 126–132. https://doi.org/https://doi.org/10.1016/j.apergo.2015.03.006
  • Suznjevic, M., Mandurov, M., & Matijasevic, M. (2017, May). Performance and QoE assessment of HTC Vive and Oculus Rift for pick-and-place tasks in VR. In 2017 ninth international conference on quality of multimedia experience (qomex) (p. 1–3). Erfurt, Germany.
  • Tregillus, S., & Folmer, E. (2016). VR-STEP: Walking-in-Place Using Inertial Sensing for Hands Free Navigation in Mobile VR Environments. In Proceedings of the 2016 chi conference on human factors in computing systems (pp. 1250–1255). New York, NY, USA: ACM.
  • Valli, A. (2008). The design of natural interaction. Multimedia Tools and Applications, 38(3), 295–305. https://doi.org/https://doi.org/10.1007/s11042-007-0190-z
  • Zhang, F., Chu, S., Pan, R., Ji, N., & Xi, L. (2017, May). Double hand-gesture interaction for walk-through in VR environment. In 2017 IEEE/ACIS 16th international conference on computer and information science (icis) (p. 539–544).Wuhan, China.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.