637
Views
4
CrossRef citations to date
0
Altmetric
Research Article

From Wayfinding Model to Future Context-based Adaptation of HCI in Urban Mobility for Pedestrians with Active Navigation Needs

, , &

References

  • Adapa, A., Nah, F. F.-H., Hall, R. H., Siau, K., & Smith, S. N. (2018). Factors influencing the adoption of smart wearable devices. International Journal of Human–Computer Interaction, 34(5), 399–409. https://doi.org/10.1080/10447318.2017.1357902
  • Aizpurua, A., Miñón, R., Gamecho, B., Cearreta, I., Arrue, M., & Garay-Vitoria, N. (2019). Accessible Ubiquitous services for supporting daily activities: A case study with young adults with intellectual disabilities. International Journal of Human–Computer Interaction, 35(17), 1608–1629. https://doi.org/10.1080/10447318.2018.1559534
  • Albrecht, R., Väänänen, R., & Lokki, T. (2016). Guided by music: Pedestrian and cyclist navigation with route and beacon guidance. Personal and Ubiquitous Computing, 20(1), 121–145. https://doi.org/10.1007/s00779-016-0906-z
  • Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal Usability Studies, 4(3), 114–123. http://dl.acm.org.ins2i.bib.cnrs.fr/citation.cfm?id=2835587.2835589
  • Bertel, S., Dressel, T., Kohlberg, T., & Von Jan, V. (2017). Spatial knowledge acquired from pedestrian urban navigation systems. In Proceedings of the 19th international conference on human-computer interaction with mobile devices and services, MobileHCI 2017. Vienna, Austria. https://doi.org/10.1145/3098279.3098543
  • Chung, J., Kim, I. J., & Schmandt, C. (2011). Guiding light: Navigation assistance system using projection based augmented reality. In Digest of technical papers - IEEE international conference on consumer electronics (pp. 881–882). Las Vegas, NV. https://doi.org/10.1109/ICCE.2011.5722917
  • Coors, V., Elting, C., Kray, C., & Laakso, K. (2005, November). Presenting route instructions on mobile devices: From textual directions to 3D visualization. In J. Dykes, A. M. MacEachren, & M.-J. Kraak (Eds.), Exploring geovisualization, 2004 (Chapter 27, pp. 529–550). Pergamon. https://doi.org/10.1016/B978-008044531-1/50445-0
  • Dey, A. K. (2001). Understanding and using context. Personal and Ubiquitous Computing, 5(1), 4–7. https://doi.org/10.1007/s007790170019
  • Dey, A. K., Abowd, G. D., & Salber, D. (2001). A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Human–Computer Interaction, 16(2–4), 97–166. https://doi.org/10.1207/S15327051HCI16234_02
  • Dourish, P. (2004). What we talk about when we talk about context. Personal and Ubiquitous Computing, 8(1), 19–30. https://doi.org/10.1007/s00779-003-0253-8
  • Frey, M. (2007). CabBoots: Shoes with integrated guidance system. In TEI’07: First international conference on tangible and embedded interaction (pp. 245–246). Baton Rouge, LA. https://doi.org/10.1145/1226969.1227019
  • Gardony, A. L., Brunyé, T. T., Mahoney, C. R., & Taylor, H. A. (2013). How navigational aids impair spatial memory: Evidence for divided attention. Spatial Cognition and Computation, 13(4), 319–350. https://doi.org/10.1080/13875868.2013.792821
  • Golledge, R. G. (1999). Wayfinding behavior: Cognitive mapping and other spatial processes. JHU press.
  • Hile, H., Vedantham, R., Cuellar, G., Liu, A., Gelfand, N., Grzeszczuk, R., & Borriello, G. (2009, January). Landmark-based pedestrian navigation from collections of geotagged photos. In Proceedings of the 7th international conference on mobile and ubiquitous multimedia (p. 145). Umea, Sweden: ACM. https://doi.org/10.1145/1543137.1543167
  • Huang, H., Schmidt, M., & Gartner, G. (2012). Spatial knowledge acquisition with mobile maps, augmented reality and voice in the context of GPS-based pedestrian navigation: Results from a field test. Cartography and Geographic Information Science, 39(2), 107–116. https://doi.org/10.1559/15230406392107
  • Hussain, I., Chen, L., Mirza, H. T., Xing, K., & Chen, G. (2014). A comparative study of sonification methods to represent distance and forward-direction in pedestrian navigation. International Journal of Human-computer Interaction, 30(9), 740–751. https://doi.org/10.1080/10447318.2014.925381
  • Ishikawa, T., Fujiwara, H., Imai, O., & Okabe, A. (2008). Wayfinding with a GPS-based mobile navigation system: A comparison with maps and direct experience. Journal of Environmental Psychology, 28(1), 74–82. https://doi.org/10.1016/j.jenvp.2007.09.002
  • Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Journal of Cognitive Psychology, 52(2), 93–129. https://doi.org/10.1016/j.cogpsych.2005.08.003
  • Kamilakis, M., Gavalas, D., & Zaroliagis, C. (2016). Mobile user experience in augmented reality vs. maps interfaces: A case study in public transportation. In L. De Paolis, & A. Mongelli (Eds.), Augmented reality, virtual reality, and computer graphics (vol. 9768). AVR 2016. Lecture Notes in Computer Science. Cham: Springer. https://doi.org/10.1007/978-3-319-40621-3_27
  • Khan, N., & Rahman, A. U. (2018). Rethinking the mini-map: A navigational aid to support spatial learning in urban game environments. International Journal of Human–Computer Interaction, 34(12), 1135–1147. https://doi.org/10.1080/10447318.2017.1418804
  • Kochar, A. (2017). Using map-augmented reality for forced migrants. Institute for Geoinformatics (ifgi), University of Munster.
  • Konishi, K., & Bohbot, V. D. (2013). Spatial navigational strategies correlate with gray matter in the hippocampus of healthy older adults tested in a virtual maze. Frontiers in Aging Neuroscience, 5(FEB), 1–8. https://doi.org/10.3389/fnagi.2013.00001
  • Kortum, P., & Sorber, M. (2015). Measuring the usability of mobile applications for phones and tablets. International Journal of Human-computer Interaction, 31(8), 518–529. https://doi.org/10.1080/10447318.2015.1064658
  • Lakehal, A., Lepreux, S., Efstratiou, C., Kolski, C., & Nicolaou, P. (2020). Investigating smartphones and AR glasses for pedestrian navigation and their effects in spatial knowledge acquisition. Proceedings of the 22st International Conference on Human-Computer Interaction with Mobile Devices and Services, ACM, Oldenburg, Germany, October.
  • Letalle, L. (2017). Self-regulation and other-regulation in route learning in teenagers and young adults with intellectual disability (in french). Univ. Lille 3.
  • Letalle, L., Lakehal, A., Mengue-Topio, H., Saint-Mars, J., Kolski, C., Lepreux, S., & Anceaux, F. (2020). Ontology for mobility of people with intellectual disability: Building a basis of definitions for the development of navigation aid systems. In HCI in Mobility, Transport, and Automotive Systems. Automated Driving and In-Vehicle Experience Design. HCII (Vol. 12212, pp. 322–334). Springer.
  • Li, B., Zhu, K., Zhang, W., Wu, A., & Zhang, X. (2014). A comparative study of two wayfinding aids for simulated driving tasks - Single-scale and dual-scale GPS aids. Behaviour & Information Technology, 33(4), 361–371. https://doi.org/10.1080/0144929X.2012.719032
  • Li, M., Mahnkopf, L., & Kobbelt, L. (2012, June). The design of a segway AR-Tactile navigation system. In International Conference on Pervasive Computing (pp. 161–178). Springer, Berlin, Heidelberg.
  • Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. J., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97(8), 4398–4403. https://doi.org/10.1073/pnas.070039597
  • Mcgookin, D., Brewster, S., & Priego, P. (2009, September). Audio bubbles: Employing non-speech audio to support tourist wayfinding. In International Conference on Haptic and Audio Interaction Design (pp. 41–50). Springer, Berlin, Heidelberg.
  • Meier, A., Matthies, D. J. C., Urban, B., & Wettach, R. (2015, June 25–26). Exploring vibrotactile feedback on the body and foot for the purpose of pedestrian navigation. In Proceedings of the 2nd international workshop on sensor-based activity recognition and interaction. Rostock, Germany. https://doi.org/10.1145/2790044.2790051
  • Montello, D. R. (2005). Navigation. In A. M. P. Shah (Ed.), The cambridge handbook of visuospatial thinking (pp. 257–294). Cambridge Univ. Press.
  • Montuwy, A., Cahour, B., & Dommes, A. (2018, April). Older pedestrians navigating with AR glasses and bone conduction headset. In Conference on human factors in computing systems – Proceedings (pp. 1–6). Montréal, Canada. https://doi.org/10.1145/3170427.3188503
  • Montuwy, A., Cahour, B., & Dommes, A. (2019). Using sensory wearable devices to navigate the city: Effectiveness and user experience in older pedestrians. Multimodal Technologies and Interaction, 3(1), 17. https://doi.org/10.3390/mti3010017
  • Morrison, A., Mulloni, A., Lemmelä, S., Oulasvirta, A., Jacucci, G., Peltonen, P., Schmalstieg, D., & Regenbrecht, H. (2011). Collaborative use of mobile augmented reality with paper maps. Computers and Graphics (Pergamon), 35(4), 789–799. https://doi.org/10.1016/j.cag.2011.04.009
  • Morrison, A., Oulasvirta, A., Peltonen, P., Lemmelä, S., Jacucci, G., Reitmayr, G., Näsänen, J., & Juustila, A. (2009). CHI ’09 Proceedings of the 27th international conference on Human factors in computing systems. In Like bees around the hive: Acomparative study of amobile augmented reality map (pp. 1889–1898). Boston, MA.
  • Pielot, M., & Boll, S. (2010, May). Tactile wayfinder: Comparison of tactile waypoint navigation with commercial pedestrian navigation systems. In International conference on pervasive computing (pp. 76–93). Springer, Berlin, Heidelberg.
  • Rehrl, K., Häusler, E., Leitinger, S., & Bell, D. (2014). Pedestrian navigation with augmented reality, voice and digital map: Final results from an in situ field study assessing performance and user experience. Journal of Location Based Services, 8(2), 75–96. https://doi.org/10.1080/17489725.2014.946975
  • Rehrl, K., Häusler, E., Steinmann, R., Leitinger, S., Bell, D., & Weber, M. (2012). Pedestrian navigation with augmented reality, voice and digital map: Results from a field study assessing performance and user experience. Lecture Notes in Geoinformation and Cartography, 199599, 3–20. https://doi.org/10.1007/978-3-642-24198-7_1
  • Ruginski, I. T., Creem-regehr, S. H., Stefanucci, J. K., & Cashdan, E. (2019). GPS use negatively affects environmental learning through spatial transformation abilities. Journal of Environmental Psychology, 64(May), 12–20. https://doi.org/10.1016/j.jenvp.2019.05.001
  • Schirmer, M., Hartmann, J., Bertel, S., & Echtler, F. (2015). Shoe me the way: A shoe-based tactile interface for eyes-free urban navigation. In MobileHCI 2015 – Proceedings of the 17th international conference on human-computer interaction with mobile devices and services (pp. 327–336). Copenhagen, Denmark. https://doi.org/10.1145/2785830.2785832
  • Schmidt, A., Beigl, M., & Gellersen, H.-W. (1999). There is more to context than location. Computers & Graphics, 23(6), 893–901. https://doi.org/10.1016/S0097-8493(99)00120-X
  • Siegel, A. W., & White, S. H. (1975). Advances in child development and behavior. Advances in Child Development and Behavior, 10, 9–55. https://doi.org/10.1016/S0065-2407(08)60007-5
  • Stephanidis, C. C., Salvendy, G., Of the Group Margherita Antona, M., Chen, J. Y. C., Dong, J., Duffy, V. G., Fang, X., Fidopiastis, C., Fragomeni, G., Fu, L. P., Guo, Y., Harris, D., Ioannou, A., Jeong, K. (Kate), Konomi, S., Krömker, H., Kurosu, M., Lewis, J. R., Marcus, A., Moallem, A., … Zhou, J. (2019). Seven HCI grand challenges. International Journal of Human–Computer Interaction, 35(14), 1229–1269. https://doi.org/10.1080/10447318.2019.1619259
  • Velázquez, R., Pissaloux, E., Rodrigo, P., Carrasco, M., Giannoccaro, N. I., & Lay-Ekuakille, A. (2018). An outdoor navigation system for blind pedestrians using GPS and tactile-foot feedback. Applied Sciences (Switzerland), 8(4), 578. https://doi.org/10.3390/app8040578
  • Walther-Franks, B., & Malaka, R. (2008, May). Evaluation of an augmented photograph-based pedestrian navigation system. In International symposium on smart graphics (pp. 94–105). Rennes, France. https://doi.org/10.1007/978-3-540-85412-8
  • Wen, J., Helton, W. S., & Billinghurst, M. (2013). A study of user perception, interface performance, and actual usage of mobile pedestrian navigation aides. In Proceedings of the human factors and ergonomics society (pp. 1958–1962). Los Angeles, USA. https://doi.org/10.1177/1541931213571437
  • Wenig, N., Wenig, D., Ernst, S., Malaka, R., Hecht, B., & Schöning, J. (2017). Pharos: Improving navigation instructions on smartwatches by including global landmarks. In Proceedings of the 19th international conference on human-computer interaction with mobile devices and services. MobileHCI 2017. Vienna, Austria. https://doi.org/10.1145/3098279.3098529
  • Wiener, J. M., Büchner, S. J., & Hölscher, C. (2009). Taxonomy of human wayfinding tasks: A knowledge-based approach. Spatial Cognition and Computation, 9(2), 152–165. https://doi.org/10.1080/13875860902906496
  • Wither, J., Au, C. E., Rischpater, R., & Grzeszczuk, R. (2013). Moving beyond the map: Automated landmark based pedestrian guidance using street level panoramas. MobileHCI 2013 – Proceedings of the 15th international conference on human-computer interaction with mobile devices and services (pp. 203–212). Munich, Germany. https://doi.org/10.1145/2493190.2493235

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.