702
Views
1
CrossRef citations to date
0
Altmetric
Survey Articles

How the Preattentive Process is Exploited in Practical Information Visualization Design: A Review

Pages 707-720 | Received 21 Apr 2021, Accepted 01 Mar 2022, Published online: 19 Apr 2022

References

  • Alberts, A., Cotgreave, A. (2017, June). Eye tracking: What it teaches us about dashboard design. Retrieved from https://tabsoft.co/2lBMGpT
  • Alves, D., Obraczka, K., & Lindberg, R. (2020). Identifying relevant data center telemetry using change point detection. In 2020 IEEE 9th International Conference on Cloud Networking (CloudNet) (p. 1–4). https://doi.org/10.1109/CloudNet51028.2020.9335800
  • Barrera-Leon, L., Corno, F., & De Russis, L. (2020). Systematic variation of preattentive attributes to highlight relevant data in information visualization. In 2020 24th International Conference Information Visualisation (IV), (p. 74–79). https://doi.org/10.1109/IV51561.2020.00022
  • Bartram, L., Patra, A., & Stone, M. (2017). Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Affective Color in Visualization (pp. 1364–1374). ACM. https://doi.org/10.1145/3025453.3026041
  • Bartram, L., & Ware, C. (2002). Filtering and brushing with motion. Information Visualization, 1(1), 66–79. https://doi.org/10.1057/palgrave.ivs.9500005
  • Bianco, S., Gasparini, F., & Schettini, R. (2015). Color coding for data visualization. Encyclopedia of information science and technology (3rd ed., pp. 1682–1691). IGI Global, https://doi.org/10.4018/978-1-4666-5888-2.ch161.
  • Brath, R., & Banissi, E. (2016). Using typography to expand the design space of data visualization. She Ji: The Journal of Design, Economics, and Innovation, 2(1), 59–87. https://doi.org/10.1016/j.sheji.2016.05.003
  • Brath, R. a., & Banissi, E. (2017). Font attributes enrich knowledge maps and information retrieval. International Journal on Digital Libraries, 18(1), 5–24. https://doi.org/10.1007/s00799-016-0168-4
  • Brewer, C. A. (1996). Prediction of simultaneous contrast between map colors with Hunt’s model of color appearance. Color Research & Application, 21(3), 221–235. https://doi.org/10.1002/(SICI)1520-6378(199606)21:3<221::AID-COL4>3.0.CO;2-U
  • Bylinskii, Z., Kim, N. W., O’Donovan, P., Alsheikh, S., Madan, S., Pfister, H., et al. (2017). Learning visual importance for graphic designs and data visualizations. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (pp. 57–69). Association for Computing Machinery. https://doi.org/10.1145/3126594.3126653
  • Cai, Z., Li, Y.-N., Zheng, X. S., & Zhang, K. (2015). Applying feature integration theory to glyph-based information visualization. In 2015 IEEE Pacific Visualization Symposium (PacificVis) (p. 99–103). https://doi.org/10.1109/PACIFICVIS.2015.7156363
  • Carenini, G., Conati, C., Hoque, E., Steichen, B., Toker, D., & Enns, J. (2014). Highlighting interventions and user differences. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Informing adaptive information visualization support (p. 1835–1844). Association for Computing Machinery. https://doi.org/10.1145/2556288.2557141.
  • Chih, C. H., & Parker, D. S. (2008). The persuasive phase of visualization. In The 14th ACM SIGKDD International Conference. Proceedings of on Knowledge Discovery and Data Mining (pp. 884–892). ACM. https://doi.org/10.1145/1401890.1401996
  • Cornish, L., Hill, A., Horswill, M. S., Becker, S. I., & Watson, M. O. (2019). Eye-tracking reveals how observation chart design features affect the detection of patient deterioration: An experimental study. Applied Ergonomics, 75(75), 230–242. https://doi.org/10.1016/j.apergo.2018.10.005
  • Correll, M., Albers, D., Franconeri, S., & Gleicher, M. (2012). Comparing averages in time series data. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1095–1104). Association for Computing Machinery. https://doi.org/10.1145/2207676.2208556
  • Craig, P., Cannon, A., Kukla, R., & Kennedy, J. (2012). MaTSE: The microarray time-series explorer. In 2012 IEEE Symposium on Biological Data Visualization (BioVis) (pp. 41–48). https://doi.org/10.1109/BioVis.2012.6378591
  • Dimara, E., Bailly, G., Bezerianos, A., & Franconeri, S. (2019). Mitigating the attraction effect with visualizations. IEEE Transactions on Visualization and Computer Graphics, 25(1), 850–860. https://doi.org/10.1109/TVCG.2018.2865233
  • Dinkla, K., Westenberg, M. A., & van Wijk, J. J. (2012). Compressed adjacency matrices: Untangling gene regulatory networks. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2457–2466. https://doi.org/10.1109/TVCG.2012.208
  • Dunlop, M., Urbanski, W., Marchany, R., & Tront, J. (2012). Leveraging cognitive principles to improve security visualization. In R. Benlamri (Ed.), Networked digital technologies (pp. 262–276). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30567-2_22.
  • Dzolkhifli, Z., Ibrahim, H., Affendey, L. S., & Madiraju, P. (2008). A framework for caching relevant data items for checking integrity constraints of mobile database. In 2008 Third International Conference on Digital Information Management (pp. 476–482). https://doi.org/10.1109/ICDIM.2008.4746801
  • Egeth, H. E., & Yantis, S. (1997). Visual attention: Control, representation, and time course. Annual Review of Psychology, 48, 269–297. https://doi.org/10.1146/annurev.psych.48.1.269
  • Elsa, S., & Neenu, D. (2017, March). A survey on various saliency detection methods. International Journal of Computer Applications, 161(5), 5–8. https://doi.org/10.5120/ijca2017913187.
  • Fabrikant, S. I., Hespanha, S. R., & Hegarty, M. (2010). Cognitively inspired and perceptually salient graphic displays for efficient spatial inference making. Annals of the Association of American Geographers, 100(1), 13–29. https://doi.org/10.1080/00045600903362378
  • Few, S. (2004, September). Tapping the power of visual perception. Retrieved from https://www.perceptualedge.com/articles/ie/visual_perception.pdf
  • Fosco, C., Casser, V., Bedi, A. K., O’Donovan, P., Hertzmann, A., & Bylinskii, Z. (2020). Predicting visual importance across graphic design types. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (p. 249–260). Association for Computing Machinery. https://doi.org/10.1145/3379337.3415825
  • Grammel, L., Tory, M., & Storey, M. (2010). How information visualization novices construct visualizations. IEEE Transactions on Visualization and Computer Graphics, 16(6), 943–952. https://doi.org/10.1109/TVCG.2010.164
  • Griffin, A. L., & Robinson, A. C. (2015). Comparing color and leader line highlighting strategies in coordinated view geovisualizations. IEEE Transactions on Visualization and Computer Graphics, 21(3), 339–349. https://doi.org/10.1109/TVCG.2014.2371858
  • Healey, C., & Enns, J. (1999). Large datasets at a glance: Combining textures and colors in scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 5(2), 145–167. https://doi.org/10.1109/2945.773807
  • Healey, C., & Enns, J. (2012). Attention and visual memory in visualization and computer graphics. IEEE Transactions on Visualization and Computer Graphics, 18(7), 1170–1188. https://doi.org/10.1109/TVCG.2011.127
  • Itti, L., & Borji, A. (2014). Computational models. In A. C. Nobre & S. Kastner (Eds.), The oxford handbook of attention (pp. 1122–1158). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199675111.013.026.
  • Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews. Neuroscience, 2(3), 194–203. https://doi.org/10.1038/35058500
  • Jacob, R. J., & Karn, K. S. (2003). Eye tracking in human-computer interaction and usability research. In The Mind’s Eye (pp. 573–605). Elsevier. https://doi.org/10.1016/B978-044451020-4/50031-1.
  • Kerzel, D. (2009). Perception in vision. In M. D. Binder, N. Hirokawa, & U. Windhorst (Eds.), Encyclopedia of neuroscience (pp. 3098–3102). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_4455.
  • Kim, S., Dong, Z., Xian, H., Upatising, B., & Yi, J. S. (2012). Does an eye tracker tell the truth about visualizations?: Findings while investigating visualizations for decision making. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2421–2430. https://doi.org/10.1109/TVCG.2012.215
  • King, J., Sonderer, K., & Lynch, K. (2016). Cognitive benefits of a simple visual metrics architecture. In F. F.-H. Nah & C.-H. Tan (Eds.), HCI in Business, Government, and Organizations: eCommerce and Innovation (pp. 319–329). Springer International Publishing. https://doi.org/10.1007/978-3-319-39396-4_29.
  • Li, J., & Gao, W. (2014). Visual saliency computation: A machine learning perspective. Springer Publishing Company, Incorporated.
  • Liang, J., & Huang, M. L. (2010). Highlighting in information visualization: A survey. In 2010 14th International Conference Information Visualisation (pp. 79–85). https://doi.org/10.1109/IV.2010.21
  • Luz, S., & Masoodian, M. (2010). Improving focus and context awareness in interactive visualization of time lines. In Proceedings of the 24th BCS Interaction Specialist Group Conference (pp. 72–80). BCS Learning & Development Ltd. https://doi.org/10.14236/ewic/HCI2010.11
  • Mackinlay, J. D., & Winslow, K. (2009, February). Designing Great Visualizations. Tableau Software Inc. Retrieved from https://www.tableau.com/whitepapers/designing-great-visualizations
  • Matzen, L. E., Haass, M. J., Divis, K. M., Wang, Z., & Wilson, A. T. (2018). January). Data visualization saliency model: A tool for evaluating abstract data visualizations. IEEE Transactions on Visualization and Computer Graphics, 24(1), 563–573. https://doi.org/10.1109/TVCG.2017.2743939
  • Mazza, R. (2009). Introduction to information visualization (Vol. I). Springer-Verlag. https://doi.org/10.1007/978-1-84800-219-7
  • Moreira, J. a., Mendes, D., & Gonçalves, D. (2020). Proceedings of the International Conference on advanced visual interfaces, incidental visualizations: Pre-attentive primitive visual tasks. Association for Computing Machinery. https://doi.org/10.1145/3399715.3399841.
  • Ostendorp, M.-C., Friedrichs, T., & Lüdtke, A. (2016). Supporting supervisory control of safety-critical systems with psychologically well-founded information visualizations. In Proceedings of the 9th Nordic Conference on Human-Computer Interaction. Association for Computing Machinery. https://doi.org/10.1145/2971485.2971512
  • Park, J. H., Nadeem, S., & Kaufman, A. (2019). GeoBrick: Exploration of spatiotemporal data. The Visual Computer, 35(2), 191–204. https://doi.org/10.1007/s00371-017-1461-y
  • Pirolli, P., & Card, S. (1995). Information foraging in information access environments. In The SIGCHI Conference, In Proceedings of on Human Factors in Computing Systems (pp. 51–58). ACM Press/Addison-Wesley Publishing Co. https://doi.org/10.1145/223904.223911.
  • Raschke, M., Blascheck, T., Richter, M., Agapkin, T., & Ertl, T. (2014, January). Visual analysis of perceptual and cognitive processes. In 2014 International Conference on Information Visualization Theory and Applications (IVAPP) (pp. 284–291).
  • Richer, G., Bourqui, R., & Auber, D. (2019). Corfish: Coordinating emphasis across multiple views using spatial distortion. In 2019 IEEE Pacific Visualization Symposium (PacificVis) (pp. 1–10). https://doi.org/10.1109/PacificVis.2019.00009
  • Rodrigues, J. F., Balan, A. G. R., Traina, A. J. M., & Traina, C. (2008). The visual expression process: Bridging vision and data visualization. In A. Butz, B. Fisher, A. Krüger, P. Olivier, & M. Christie (Eds.), Smart graphics (pp. 207–215). Springer.
  • Rodrigues, J. F., Traina, A. J. M., Oliveira, M. C. F. d., & Traina, C. (2006). Reviewing data visualization: An analytical taxonomical study. In Tenth International Conference on Information Visualisation (IV’06, 6, July) (pp. 713–720). https://doi.org/10.1109/IV.2006.94
  • Sadana, R., Major, T., Dove, A., & Stasko, J. (2014). OnSet: A visualization technique for large-scale binary set data. IEEE Transactions on Visualization and Computer Graphics, 20(12), 1993–2002. https://doi.org/10.1109/TVCG.2014.2346249
  • SCImago. (2021, August). ScimagoJR. Retrieved from https://www.scimagojr.com/
  • Seong, Y., Nuamah, J., & Yi, S. (2020). Guidelines for cybersecurity visualization design. In Proceedings of the 24th Symposium on International Database Engineering & Applications. Association for Computing Machinery. https://doi.org/10.1145/3410566.3410606
  • Steinberger, M., Waldner, M., Streit, M., Lex, A., & Schmalstieg, D. (2011). Context-preserving visual links. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2249–2258. https://doi.org/10.1109/TVCG.2011.183
  • Toker, D., & Conati, C. (2014). Eye tracking to understand user differences in visualization processing with highlighting interventions. In V. Dimitrova, T. Kuflik, D. Chin, F. Ricci, P. Dolog, & G.-J. Houben (Eds.), User modeling, adaptation, and personalization (pp. 219–230). Springer International Publishing. https://doi.org/10.1007/978-3-319-08786-3_19.
  • Toker, D., Conati, C., Steichen, B., & Carenini, G. (2013). Individual user characteristics and information visualization. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France. Connecting the Dots Through Eye Tracking (pp. 295–304) ACM. https://doi.org/10.1145/2470654.2470696
  • Toker, D., Lallé, S., & Conati, C. (2017). Pupillometry and head distance to the screen to predict skill acquisition during information visualization tasks. In Proceedings of the 22Nd International Conference on Intelligent User Interfaces, Limassol, Cyprus (pp. 221–231) ACM. https://doi.org/10.1145/3025171.3025187
  • Toker, D., Steichen, B., Gingerich, M., Conati, C., & Carenini, G. (2014). Towards facilitating user skill acquisition. In Proceedings of the 19th International Conference on Intelligent User Interfaces, Identifying Untrained Visualization Users Through Eye Tracking (pp. 105–114). Haifa, Israel: ACM. https://doi.org/10.1145/2557500.2557524
  • Tominski, C., Schumann, H., Andrienko, G., & Andrienko, N. (2012). Stacking-based visualization of trajectory attribute data. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2565–2574. https://doi.org/10.1109/TVCG.2012.265
  • Treisman, A. M., & Gelade, G. (1980). Feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5
  • Treisman, A. M., & Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95(1), 15–48. https://doi.org/10.1037/0033-295x.95.1.15
  • Visual Salience. (2009). In M. D. Binder, N. Hirokawa, & U. Windhorst (Eds.), Encyclopedia of Neuroscience (pp. 4336–4336). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_6371.
  • Waldner, M., Karimov, A., & Gröller, E. (2017, May). Exploring visual prominence of multi-channel highlighting in visualizations. In Proceedings of the 33rd Spring Conference on Computer Graphics (p. 8). ACM. https://doi.org/10.1145/3154353.3154369
  • Wang, W. B., Huang, M. L., & Nguyen, Q. V. (2016). A space optimized scatter plot matrix visualization. In Y. Luo (Ed.), Cooperative design, visualization, and engineering (pp. 382–385). Springer International Publishing. https://link.springer.com/chapter/10.1007%2F978-3-319-46771-9_50.
  • Ware, C. (1988). Color sequences for univariate maps: theory, experiments and principles. IEEE Computer Graphics and Applications, 8(5), 41–49. https://doi.org/10.1109/38.7760
  • Ware, C. (2013). Visual salience and finding information. In Information visualization, perception for design (3rd ed.). Morgan Kaufmann.
  • Ware, C., & Beatty, J. C. (1988). Using color dimensions to display data dimensions. Human Factors, 30(2), 127–142. https://doi.org/10.1177/001872088803000201
  • Yalçın, M. A., Elmqvist, N., & Bederson, B. B. (2018). Keshif: Rapid and expressive tabular data exploration for novices. IEEE Transactions on Visualization and Computer Graphics, 24(8), 2339–2352. https://doi.org/10.1109/TVCG.2017.2723393
  • Yasuda, K., Takahashi, S., & Wu, H.-Y. (2016). Enhancing infographics based on symmetry saliency. In Proceedings of the 9th International Symposium on Visual Information Communication and Interaction (pp. 35–42). ACM. https://doi.org/10.1145/2968220.2968224
  • Zhou, L., Rivinius, M., Johnson, C. R., & Weiskopf, D. (2020). Photographic high-dynamic-range scalar visualization. IEEE Transactions on Visualization and Computer Graphics, 26(6), 2156–2167. https://doi.org/10.1109/TVCG.2020.2970522

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.