1,550
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Machine Learning Techniques in Adaptive and Personalized Systems for Health and Wellness

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1938-1962 | Received 31 Oct 2021, Accepted 08 Jun 2022, Published online: 27 Jul 2022

References

  • Abd, D., Alwan, J. K., Ibrahim, M., & Naeem, M. B. (2017). The utilisation of machine learning approaches for medical data classification and personal care system mangementfor sickle cell disease [Paper presentation]. 2017 Annual Conference on New Trends in Information and Communications Technology Applications, NTICT 2017 (pp. 213–218). https://doi.org/10.1109/NTICT.2017.7976147
  • Abdo, M. A., Abdel-Hamid, A. A., & Elzouka, H. A. (2020). A cloud-based mobile healthcare monitoring framework with location privacy preservation [Paper presentation]. 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT) (pp. 1–8). https://doi.org/10.1109/3ICT51146.2020.9311999
  • Afreen, N., Singh, S., & Kumar, S. (2019). Individualized patient- centered type 2 diabetes recommender system. In International Conference on Advances in Computing and Data Sciences (ICACDS) (pp. 45–54). Springer. https://doi.org/10.1007/978-981-13-9939-8_5
  • Akbulut, A., Ertugrul, E., & Topcu, V. (2018). Fetal health status prediction based on maternal clinical history using machine learning techniques. Computer Methods and Programs in Biomedicine, 163, 87–100. https://doi.org/10.1016/j.cmpb.2018.06.010
  • Alfian, G., Syafrudin, M., Ijaz, M. F., Syaekhoni, M. A., Fitriyani, N. L., & Rhee, J. (2018). A personalized healthcare monitoring system for diabetic patients by utilizing BLE-based sensors and real-time data processing. Sensors, 18(7), 2183. https://doi.org/10.3390/s18072183
  • Alharthi, R., Alharthi, R., Guthier, B., & El Saddik, A. (2019). CASP: Context-aware stress prediction system. Multimedia Tools and Applications, 78(7), 9011–9031. https://doi.org/10.1007/s11042-017-5246-0
  • Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A., & Aljaaf, A. J. (2020). A systematic review on supervised and unsupervised machine learning algorithms for data science. In M. W. Berry (Ed.), Supervised and unsupervised learning for data science (pp. 3–21). Springer. https://doi.org/10.1007/978-3-030-22475-2_1
  • Apple Inc. (n.d.). Core ML overview – Machine learning – Apple developer. Retrieved October 31, 2021, from https://developer.apple.com/machine-learning/core-ml/
  • Arpaia, P., Crauso, F., de Benedetto, E., Duraccio, L., Improta, G., & Serino, F. (2022). Soft transducer for patient’s vitals telemonitoring with deep learning-based personalized anomaly detection. Sensors, 22(2), 536. https://doi.org/10.3390/s22020536
  • Asthana, S., Megahed, A., & Strong, R. (2017). A recommendation system for proactive health monitoring using IoT and wearable technologies. In M. Z.-H. Tata S. (Ed.), Proceedings - 2017 IEEE 6th International Conference on AI and Mobile Services, AIMS 2017 (pp. 14–21). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/AIMS.2017.11
  • Auffenberg, G. B., Ghani, K. R., Ramani, S., Usoro, E., Denton, B., Rogers, C., Stockton, B., Miller, D. C., & Singh, K. (2019). askMUSIC: Leveraging a clinical registry to develop a new machine learning model to inform patients of prostate cancer treatments chosen by similar men. European Urology, 75(6), 901–907. https://doi.org/10.1016/j.eururo.2018.09.050
  • Aujla, G. S., Jindal, A., Chaudhary, R., Kumar, N., Vashist, S., Sharma, N., & Obaidat, M. S. (2019). DLRS: Deep learning-based recommender system for smart healthcare ecosystem [Paper presentation]. ICC 2019 - 2019 IEEE International Conference on Communications (ICC) (pp. 1–6). https://doi.org/10.1109/ICC.2019.8761416
  • Bae, S., Chung, T., Ferreira, D., Dey, A. K., & Suffoletto, B. (2018). Mobile phone sensors and supervised machine learning to identify alcohol use events in young adults: Implications for just-in-time adaptive interventions. Addictive Behaviors, 83(SI), 42–47. https://doi.org/10.1016/j.addbeh.2017.11.039
  • Barata, F., Kowatsch, T., Tinschert, P., & Filler, A. (2016). Personal MobileCoach: Tailoring behavioral interventions to the needs of individual participants [Paper presentation]. UbiComp 2016 Adjunct - Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 1089–1094). https://doi.org/10.1145/2968219.2972713
  • Barbosa, V. A. D. F., Gomes, J. C., de Santana, M. A., de Lima, C. L., Calado, R. B., Bertoldo Júnior, C. R., Albuquerque, J. E., de, A., de Souza, R. G., de Araújo, R. J. E., Mattos Júnior, L. A. R., de Souza, R. E., & dos Santos, W. P. (2021). Covid-19 rapid test by combining a Random Forest-based web system and blood tests. Journal of Biomolecular Structure and Dynamics, 1–20. https://doi.org/10.1080/07391102.2021.1966509
  • Basu, D., Kashid, S., Pawar, S., & Datta, D. (2020). An integrated detection and treatment recommendation framework for breast cancer using convolutional neural networks and TOPSIS [Paper presentation]. 2020 IEEE 17th India Council International Conference, INDICON 2020, December 10. https://doi.org/10.1109/INDICON49873.2020.9342266
  • Baumeister, H., Kraft, R., Baumel, A., Pryss, R., & Messner, E.-M. (2019). Persuasive E-health design for behavior change. In Digital phenotyping and mobile sensing (pp. 261–276). Springer. https://doi.org/10.1007/978-3-030-31620-4_17
  • Ben-Israel, D., Jacobs, W. B., Casha, S., Lang, S., Ryu, W. H. A., de Lotbiniere-Bassett, M., & Cadotte, D. W. (2020). The impact of machine learning on patient care: A systematic review. Artificial Intelligence in Medicine, 103, 101785. https://doi.org/10.1016/j.artmed.2019.101785
  • Bisong, E. (2019). Building machine learning and deep learning models on Google cloud platform: A comprehensive guide for beginners. Apress.
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Buettner, R., Klenk, F., & Ebert, M. (2020). A systematic literature review of machine learning-based disease profiling and personalized treatment [Paper presentation]. Proceedings - 2020 IEEE 44th Annual Computers, Software, and Applications Conference, COMPSAC 2020 (pp. 1673–1678). https://doi.org/10.1109/COMPSAC48688.2020.00-15
  • Burns, M. N., Begale, M., Duffecy, J., Gergle, D., Karr, C. J., Giangrande, E., & Mohr, D. C. (2011). Harnessing context sensing to develop a mobile intervention for depression. Journal of Medical Internet Research, 13(3), e55. https://doi.org/10.2196/jmir.1838
  • Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024
  • Cheerla, N., & Gevaert, O. (2017). MicroRNA based pan-cancer diagnosis and treatment recommendation. BMC Bioinformatics, 18(1), 32. https://doi.org/10.1186/s12859-016-1421-y
  • Chen, M., Yang, J., Zhou, J., Hao, Y., Zhang, J., & Youn, C.-H. (2018). 5G-smart diabetes: Toward personalized diabetes diagnosis with healthcare big data clouds. IEEE Communications Magazine, 56(4), 16–23. https://doi.org/10.1109/MCOM.2018.1700788
  • Chen, T., Zhang, X., Jiang, H., Asaeikheybari, G., Goel, N., Hooper, M. W., & Huang, M.-C. (2018). Are you smoking? Automatic alert system helping people keep away from cigarettes. Smart Health, 9–10, 158–169. https://doi.org/10.1016/j.smhl.2018.07.008
  • Chiang, P., & Dey, S. (2019). Offline and online learning techniques for personalized blood pressure prediction and health behavior recommendations. IEEE Access, 7, 130854–130864. https://doi.org/10.1109/ACCESS.2019.2939218
  • Chiang, P.-H., Wong, M., & Dey, S. (2021). Using wearables and machine learning to enable personalized lifestyle recommendations to improve blood pressure. IEEE Journal of Translational Engineering in Health and Medicine, 9, 2700513. https://doi.org/10.1109/JTEHM.2021.3098173
  • Chin, W. H., Nuo Wi Tay, N., Kubota, N., & Loo, C. K. (2020). A lightweight neural-net with assistive mobile robot for human fall detection system [Paper presentation]. Proceedings of the International Joint Conference on Neural Networks (pp. 1–6). https://doi.org/10.1109/IJCNN48605.2020.9206637
  • Cho, G., Yim, J., Choi, Y., Ko, J., & Lee, S. H. (2019). Review of machine learning algorithms for diagnosing mental illness. Psychiatry Investigation, 16(4), 262–269. https://doi.org/10.30773/pi.2018.12.21.2
  • Copeland, M., Soh, J., Puca, A., Manning, M., & Gollob, D. (2015). Microsoft azure. Apress.
  • Coutinho, E., Alshukri, A., de Berardinis, J., & Dowrick, C. (2021). POLYHYMNIA mood-empowering people to cope with depression through music listening [Paper presentation]. UbiComp/ISWC 2021 - Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers (pp. 188–193). https://doi.org/10.1145/3460418.3479334
  • da Silva, V. J., da Silva Souza, V., Guimarães da Cruz, R., Mesquita Vidal Martinez de Lucena, J., Jazdi, N., & Ferreira de Lucena Junior, V. (2019). Commercial devices-based system designed to improve the treatment adherence of hypertensive patients. Sensors, 19(20), 4539. https://doi.org/10.3390/s19204539
  • Delmastro, F., Martino, F. D., & Dolciotti, C. (2020). Cognitive training and stress detection in MCI frail older people through wearable sensors and machine learning. IEEE Access, 8, 65573–65590. https://doi.org/10.1109/ACCESS.2020.2985301
  • Dijkhuis, T. B., Blaauw, F. J., van Ittersum, M. W., Velthuijsen, H., & Aiello, M. (2018). Personalized physical activity coaching: A machine learning approach. Sensors, 18(2), 623. https://doi.org/10.3390/s18020623
  • D'mello, S. K., & Kory, J. (2015). A review and meta-analysis of multimodal affect detection systems. ACM Computing Surveys, 47(3), 1–36. https://doi.org/10.1145/2682899
  • Edara, D. C., Sistla, V., & Kolli, V. K. K. (2020). Health app recommendation system using ensemble multimodel deep learning. Journal of Engineering Science and Technology Review, 13(5), 7–19. https://doi.org/10.25103/jestr.135.03
  • El Barachi, M., Oroumchian, F., Rauf, R., Khan, U., Al Hassooni, B., Al Basosi, A., & Kazia, S. (2019). EpiSense: Towards a smart solution for epileptic patients’ care [Paper presentation]. 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech) (pp. 1–6). https://doi.org/10.23919/SpliTech.2019.8783034
  • Elvitigala, D. S., Scholl, P. M., Suriyaarachchi, H., Dissanayake, V., & Nanayakkara, S. (2021). StressShoe: A DIY toolkit for just-in-time personalised stress interventions for office workers performing sedentary tasks [Paper presentation]. Proceedings of the 23rd International Conference on Mobile Human-Computer Interaction. https://doi.org/10.1145/3447526.3472023
  • Forman, E. M., Goldstein, S. P., Crochiere, R. J., Butryn, M. L., Juarascio, A. S., Zhang, F., & Foster, G. D. (2019). Randomized controlled trial of OnTrack, a just-in-time adaptive intervention designed to enhance weight loss. Translational Behavioral Medicine, 9(6), 989–1001. https://doi.org/10.1093/tbm/ibz137
  • Forman, E. M., Goldstein, S. P., Zhang, F., Evans, B. C., Manasse, S. M., Butryn, M. L., Juarascio, A. S., Abichandani, P., Martin, G. J., & Foster, G. D. (2019). OnTrack: Development and feasibility of a smartphone app designed to predict and prevent dietary lapses. Translational Behavioral Medicine, 9(2), 236–245. https://doi.org/10.1093/tbm/iby016
  • Ganju, A., Satyan, S., Tanna, V., & Menezes, S. R. (2021). AI for improving children’s health: A community case study. Frontiers in Artificial Intelligence, 3, 544972. https://doi.org/10.3389/frai.2020.544972
  • Ghandeharioun, A., McDuff, D., Czerwinski, M., & Rowan, K. (2019). EMMA: An emotion-aware wellbeing chatbot [Paper presentation]. 2019 8th International Conference on Affective Computing and Intelligent Interaction, ACII 2019 (pp. 15–21). https://doi.org/10.1109/ACII.2019.8925455
  • Google Inc. (n.d.-a). ML Kit | Google developers. Retrieved October 31, 2021, from https://developers.google.com/ml-kit
  • Google Inc. (n.d.-b). TensorFlow Lite | ML for mobile and edge devices. Retrieved October 31, 2021, from https://www.tensorflow.org/lite/
  • Gorbonos, E., Liu, Y., & Hoang, C. T. (2018). NutRec: Nutrition oriented online recipe recommender [Paper presentation]. 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2018) (pp. 25–32). https://doi.org/10.1109/WI.2018.0-111
  • Gu, W. (2017). PhD forum abstract: Non-intrusive blood glucose monitor by multi-task deep learning [Paper presentation]. Proceedings - 2017 16th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN 2017 (pp. 249–250). https://doi.org/10.1145/3055031.3055049
  • Gu, Y., Yang, M., Shi, Z., & Wu, Z. (2015). The applications of decision-level data fusion techniques in the field of multiuser detection for DS-UWB systems. Sensors, 15(10), 24771–24790. https://doi.org/10.3390/s151024771
  • Gupta, A., & Katarya, R. (2020). Social media based surveillance systems for healthcare using machine learning: A systematic review. Journal of Biomedical Informatics, 108, 103500. https://doi.org/10.1016/j.jbi.2020.103500
  • Hassan, M. M., Gumaei, A., Aloi, G., Fortino, G., & Zhou, M. (2019). A smartphone-enabled fall detection framework for elderly people in connected home healthcare. IEEE Network., 33(6), 58–63. https://doi.org/10.1109/MNET.001.1900100
  • Hermens, H., Op den Akker, H., Tabak, M., Wijsman, J., & Vollenbroek, M. (2014). Personalized coaching systems to support healthy behavior in people with chronic conditions. Journal of Electromyography and Kinesiology, 24(6), 815–826. https://doi.org/10.1016/j.jelekin.2014.10.003
  • Holt, J. M., Cusatis, R., Asan, O., Williams, J., Nukuna, S., Flynn, K. E., Moore, J., & Crotty, B. H. (2020). Incorporating patient-generated contextual data into care: Clinician perspectives using the consolidated framework for implementation science. Healthcare, 8(1), 100369. https://doi.org/10.1016/j.hjdsi.2019.100369
  • Hu, Y., Wen, G., Liao, H., Wang, C., Dai, D., & Yu, Z. (2021). Automatic construction of chinese herbal prescriptions from tongue images using CNNs and auxiliary latent therapy topics. IEEE Transactions on Cybernetics, 51(2), 708–721. https://doi.org/10.1109/TCYB.2019.2909925
  • Hung, C. Y., Lin, C. H., Chang, C. S., Li, J. L., & Lee, C. C. (2019). Predicting gastrointestinal bleeding events from multimodal in-hospital electronic health records using deep fusion networks [Paper presentation]. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (pp. 2447–2450). https://doi.org/10.1109/EMBC.2019.8857244
  • IBM. (n.d.). IBM Cloud. Retrieved October 31, 2021, from https://www.ibm.com/cloud
  • Jamil, F., Kahng, H. K., Kim, S., & Kim, D.-H. (2021). Towards secure fitness framework based on IoT-enabled blockchain network integrated with machine learning algorithms. Sensors, 21(5), 1640. https://doi.org/10.3390/s21051640
  • Javed, A. R., Sarwar, M. U., Ur Rehman, S., Khan, H. U., Al-Otaibi, Y. D., & Alnumay, W. S. (2021). PP-SPA: Privacy preserved smartphone-based personal assistant to improve routine life functioning of cognitive impaired individuals. Neural Processing Letters, 1–18. https://doi.org/10.1007/s11063-020-10414-5
  • Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101
  • Jović, A., Brkić, K., & Bogunović, N. (2015). A review of feature selection methods with applications [Paper presentation]. 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2015 - Proceedings (pp. 1200–1205). https://doi.org/10.1109/MIPRO.2015.7160458
  • Kadri, N., Ellouze, A., & Ksantini, M. (2020). Recommendation system for human physical activities using smartphones [Paper presentation]. 2020 2nd International Conference on Computer and Information Sciences, ICCIS 2020. https://doi.org/10.1109/ICCIS49240.2020.9257671
  • Kajiwara, Y., & Kimura, H. (2019). Object identification and safe route recommendation based on human flow for the visually impaired. Sensors, 19(24), 5343. https://doi.org/10.3390/s19245343
  • Kang, J. J. (2021). A military human performance management system design using machine learning algorithms [Paper presentation]. 2021 31st International Telecommunication Networks and Applications Conference (ITNAC) (pp. 13–18). https://doi.org/10.1109/ITNAC53136.2021.9652140
  • Kariyawasam, R., Nadeeshani, M., Hamid, T., Subasinghe, I., Samarasinghe, P., & Ratnayake, P. (2019). Pubudu: Deep learning based screening and intervention of dyslexia, dysgraphia and dyscalculia [Paper presentation]. 2019 IEEE 14th International Conference on Industrial and Information Systems: Engineering for Innovations for Industry 4.0, ICIIS 2019 - Proceedings (pp. 476–481). https://doi.org/10.1109/ICIIS47346.2019.9063301
  • Kesavan, R., & Arumugam, S. (2020). Adaptive deep convolutional neural network-based secure integration of fog to cloud supported Internet of Things for health monitoring system. Transactions on Emerging Telecommunications Technologies, 31(10), e4104. https://doi.org/10.1002/ett.4104
  • Khalaf, M., Hussain, A. J., Al-Jumeily, D., Keenan, R., Keight, R., Fergus, P., & Idowu, I. O. (2016). Applied difference techniques of machine learning algorithm and web-based management system for sickle cell disease [Paper presentation]. Proceedings - 2015 International Conference on Developments in eSystems Engineering, DeSE 2015 (pp. 231–235). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/DeSE.2015.18
  • Khumrin, P., Ryan, A., Juddy, T., Verspoor, K. (2018). DrKnow: A diagnostic learning tool with feedback from automated clinical decision support. AMIA Annual Symposium Proceedings. AMIA Symposium, 2018, 1348–1357.
  • Koren, G., Souroujon, D., Shaul, R., Bloch, A., Leventhal, A., Lockett, J., & Shalev, V. (2019). “A patient like me” – An algorithm-based program to inform patients on the likely conditions people with symptoms like theirs have. Medicine, 98(42), e17596. https://doi.org/10.1097/MD.0000000000017596
  • Krishnan, S. P. T., & Gonzalez, J. L. U. (2015). Building your next big thing with Google Cloud Platform. Apress. https://doi.org/10.1007/978-1-4842-1004-8
  • Lahat, D., Adali, T., & Jutten, C. (2015). Multimodal data fusion: An overview of methods, challenges, and prospects. Proceedings of the IEEE, 103(9), 1449–1477. https://doi.org/10.1109/JPROC.2015.2460697
  • Le Glaz, A., Haralambous, Y., Kim-Dufor, D. H., Lenca, P., Billot, R., Ryan, T. C., Marsh, J., DeVylder, J., Walter, M., Berrouiguet, S., & Lemey, C. (2021). Machine learning and natural language processing in mental health: Systematic review. Journal of Medical Internet Research, 23(5), e15708. https://doi.org/10.2196/15708
  • Lee, H., Kang, J., & Yeo, J. (2021). Medical specialty recommendations by an artificial intelligence chatbot on a smartphone: Development and deployment. Journal of Medical Internet Research, 23(5), e27460. https://doi.org/10.2196/27460
  • Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60. https://doi.org/10.1109/MSP.2020.2975749
  • Li, Z., Das, S., Codella, J., Hao, T., Lin, K., Maduri, C., & Chen, C.-H. (2019). An adaptive, data-driven personalized advisor for increasing physical activity. IEEE Journal of Biomedical and Health Informatics, 23(3), 999–1010. https://doi.org/10.1109/JBHI.2018.2879805
  • Liang, Z., Zhang, G., Huang, J. X., & Hu, Q. V. (2014). Deep learning for healthcare decision making with EMRs [Paper presentation]. Proceedings - 2014 IEEE International Conference on Bioinformatics and Biomedicine, IEEE BIBM 2014 (pp. 556–559). https://doi.org/10.1109/BIBM.2014.6999219
  • Liao, W. X., He, P., Hao, J., Wang, X. Y., Yang, R. L., An, D., & Cui, L. G. (2020). Automatic identification of breast ultrasound image based on supervised block-based region segmentation algorithm and features combination migration deep learning model. IEEE Journal of Biomedical and Health Informatics, 24(4), 984–993. https://doi.org/10.1109/JBHI.2019.2960821
  • Liu, B. (2011). Supervised learning. In Web data mining (pp. 63–132). Springer. https://doi.org/10.1007/978-3-642-19460-3_3
  • Loftus, T. J., Filiberto, A. C., Li, Y., Balch, J., Cook, A. C., Tighe, P. J., Efron, P. A., Upchurch, G. R., Rashidi, P., Li, X., & Bihorac, A. (2020). Decision analysis and reinforcement learning in surgical decision-making. Surgery, 168(2), 253–266. https://doi.org/10.1016/j.surg.2020.04.049
  • Lopez-Guede, J. M., Moreno-Fernandez-De-Leceta, A., Martinez-Garcia, A., & Graña, M. (2015). Lynx: Automatic elderly behavior prediction in home telecare. BioMed Research International, 2015, 201939. https://doi.org/10.1155/2015/201939
  • Loram, I., Siddique, A., Sanchez, M. B., Harding, P., Silverdale, M., Kobylecki, C., & Cunningham, R. (2020). Objective analysis of neck muscle boundaries for cervical dystonia using ultrasound imaging and deep learning. IEEE Journal of Biomedical and Health Informatics, 24(4), 1016–1027. https://doi.org/10.1109/JBHI.2020.2964098
  • Luštrek, M., Bohanec, M., Cavero Barca, C., Ciancarelli, M. C., Clays, E., Dawodu, A. A., Derboven, J., De Smedt, D., Dovgan, E., Lampe, J., Marino, F., Mlakar, M., Pioggia, G., Puddu, P. E., Rodríguez, J. M., Schiariti, M., Slapničar, G., Slegers, K., Tartarisco, G., Valič, J., & Vodopija, A. (2021). A personal health system for self-management of congestive heart failure (HeartMan): Development, technical evaluation, and proof-of-concept randomized controlled trial. JMIR Medical Informatics, 9(3), e24501. https://doi.org/10.2196/24501
  • Mahyari, A., & Pirolli, P. (2021). Physical exercise recommendation and success prediction using interconnected recurrent neural networks [Paper presentation]. 2021 IEEE International Conference on Digital Health (ICDH) (pp. 148–153). https://doi.org/10.1109/ICDH52753.2021.00027
  • Martín, P., Sánchez, M., Álvarez, L., Alonso, V., & Bajo, J. (2011). Multi-agent system for detecting elderly people falls through mobile devices. Advances in Intelligent and Soft Computing, 92, 93–99. https://doi.org/10.1007/978-3-642-19937-0_12
  • Martin-Isla, C., Campello, V. M., Izquierdo, C., Raisi-Estabragh, Z., Baeßler, B., Petersen, S. E., & Lekadir, K. (2020). Image-based cardiac diagnosis with machine learning: A review. Frontiers in Cardiovascular Medicine, 7(1), 1. https://doi.org/10.3389/fcvm.2020.00001
  • Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare: Review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236–1246. https://doi.org/10.1093/bib/bbx044
  • Mishra, V., Künzler, F., Kramer, J.-N., Fleisch, E., Kowatsch, T., & Kotz, D. (2021). Detecting receptivity for mHealth interventions in the natural environment. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(2), 1–24. https://doi.org/10.1145/3463492
  • Mlodzinski, E., Stone, D. J., & Celi, L. A. (2020). Machine learning for pulmonary and critical care medicine: A narrative review. Pulmonary Therapy, 6(1), 67–77. https://doi.org/10.1007/s41030-020-00110-z
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
  • Mrozek, D., Koczur, A., & Małysiak-Mrozek, B. (2020). Fall detection in older adults with mobile IoT devices and machine learning in the cloud and on the edge. Information Sciences, 537, 132–147. https://doi.org/10.1016/j.ins.2020.05.070
  • Murnane, E. L., Huffaker, D., & Kossinets, G. (2015). Mobile health apps: Adoption, adherence, and abandonment [Paper presentation]. UbiComp and ISWC 2015 - Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the Proceedings of the 2015 ACM International Symposium on Wearable Computers (pp. 261–264). https://doi.org/10.1145/2800835.2800943
  • National Library of Medicine. (n.d.). PubMed. Retrieved October 31, 2021, from https://pubmed.ncbi.nlm.nih.gov/
  • Neloy, A. A., Alam, S., Bindu, R. A., & Moni, N. J. (2019). Machine learning based health prediction system using IBM cloud as PaaS [Paper presentation]. Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI 2019 (pp. 444–450). https://doi.org/10.1109/ICOEI.2019.8862754
  • Nosakhare, E., & Picard, R. (2020). Toward assessing and recommending combinations of behaviors for improving health and well-being. ACM Transactions on Computing for Healthcare, 1(1), 1–29. https://doi.org/10.1145/3368958
  • Paredes, P., Gilad-Bachrach, R., Czerwinski, M., Roseway, A., Rowan, K., & Hernandez, J. (2014). PopTherapy: Coping with stress through pop-culture [Paper presentation]. Proceedings - PERVASIVEHEALTH 2014: 8th International Conference on Pervasive Computing Technologies for Healthcare (pp. 109–117). https://doi.org/10.4108/icst.pervasivehealth.2014.255070
  • Pathinarupothi, R. K., Durga, P., & Rangan, E. S. (2018). Data to diagnosis in global health: A 3P approach. BMC Medical Informatics and Decision Making, 18(1), 78. https://doi.org/10.1186/s12911-018-0658-y
  • Pelle, T., Bevers, K., van der Palen, J., van den Hoogen, F. H. J., & van den Ende, C. H. M. (2019). Development and evaluation of a tailored e-self-management intervention (dr. Bart app) for knee and/or hip osteoarthritis: Study protocol. BMC Musculoskeletal Disorders, 20(1), 398. https://doi.org/10.1186/s12891-019-2768-9
  • Popp, C. J., St-Jules, D. E., Hu, L., Ganguzza, L., Illiano, P., Curran, M., Li, H., Schoenthaler, A., Bergman, M., Schmidt, A. M., Segal, E., Godneva, A., & Sevick, M. A. (2019). The rationale and design of the personal diet study, a randomized clinical trial evaluating a personalized approach to weight loss in individuals with pre-diabetes and early-stage type 2 diabetes. Contemporary Clinical Trials, 79, 80–88. https://doi.org/10.1016/j.cct.2019.03.001
  • Prabhu, G., Kuklyte, J., Gualano, L., Venkataraman, K., Ahmadi, A., Duff, O., Walsh, D., Woods, C., O’Connor, N. E., & Moran, K. (2018). Design and development of the medFit app: A mobile application for cardiovascular disease rehabilitation. In International Conference on Wireless Mobile Communication and Healthcare (MobiHealth) (pp. 20–28). Springer. https://doi.org/10.1007/978-3-319-98551-0_3
  • Priyadarshi, A., & Saha, S. K. (2020). Web information extraction for finding remedy based on a patient-authored text: A study on homeopathy. Network Modeling Analysis in Health Informatics and Bioinformatics, 9(1), 9. https://doi.org/10.1007/s13721-019-0216-2
  • Qian, K., Janott, C., Schmitt, M., Zhang, Z., Heiser, C., Hemmert, W., Yamamoto, Y., & Schuller, B. W. (2021). Can machine learning assist locating the excitation of snore sound? A review. IEEE Journal of Biomedical and Health Informatics, 25(4), 1233–1246. https://doi.org/10.1109/JBHI.2020.3012666
  • Rabbi, M., Aung, M. H., Zhang, M., & Choudhury, T. (2015). MyBehavior: Automatic personalized health feedback from user behaviors and preferences using smartphones [Paper presentation]. UbiComp 2015 - Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 707–718). https://doi.org/10.1145/2750858.2805840
  • Rachakonda, L., Mohanty, S. P., & Kougianos, E. (2020). ILog: An intelligent device for automatic food intake monitoring and stress detection in the IoMT. IEEE Transactions on Consumer Electronics, 66(2), 115–124. https://doi.org/10.1109/TCE.2020.2976006
  • Rai, A. (2020). Explainable AI: From black box to glass box. Journal of the Academy of Marketing Science, 48(1), 137–141. https://doi.org/10.1007/s11747-019-00710-5
  • Rajasekaran, S., & Kousalya, G. (2022). Virtual nursing using deep belief networks for elderly people (DBN-EP). Computer Systems Science and Engineering, 42(3), 985–1000. https://doi.org/10.32604/csse.2022.022234
  • Rasley, J., Rajbhandari, S., Ruwase, O., & He, Y. (2020). DeepSpeed: System optimizations enable training deep learning models with over 100 billion parameters [Paper presentation]. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 3505–3506). https://doi.org/10.1145/3394486.3406703
  • Rieke, N., Hancox, J., Li, W., Milletarì, F., Roth, H. R., Albarqouni, S., Bakas, S., Galtier, M. N., Landman, B. A., Maier-Hein, K., Ourselin, S., Sheller, M., Summers, R. M., Trask, A., Xu, D., Baust, M., & Cardoso, M. J. (2020). The future of digital health with federated learning. NPJ Digital Medicine, 3(1), 1–7. https://doi.org/10.1038/s41746-020-00323-1
  • Salemink, K., Strijker, D., & Bosworth, G. (2017). Rural development in the digital age: A systematic literature review on unequal ICT availability, adoption, and use in rural areas. Journal of Rural Studies, 54, 360–371. https://doi.org/10.1016/j.jrurstud.2015.09.001
  • Sansrimahachai, W. (2020a). Personalized walking exercise support system for elderly based on machine learning [Paper presentation]. JCSSE 2020 - 17th International Joint Conference on Computer Science and Software Engineering (pp. 6–11). https://doi.org/10.1109/JCSSE49651.2020.9268327
  • Sansrimahachai, W. (2020b). Personalized walking exercise support system for elderly based on machine learning [Paper presentation]. JCSSE 2020 - 17th International Joint Conference on Computer Science and Software Engineering (pp. 6–11). https://doi.org/10.1109/JCSSE49651.2020.9268327
  • Sarwar, M. U., & Javed, A. R. (2019). Collaborative health care plan through crowdsource data using ambient application [Paper presentation]. Proceedings - 22nd International Multitopic Conference, INMIC 2019. https://doi.org/10.1109/INMIC48123.2019.9022684
  • Scherzer, C. R., Ranney, M. L., Jain, S., Bommaraju, S. P., Patena, J., Langdon, K., Nimaja, E., Jennings, E., & Beaudoin, F. L. (2020). Mobile peer-support for opioid use disorders: Refinement of an innovative machine learning tool. Journal of Psychiatry and Brain Science, 5(1), e200001. https://doi.org/10.20900/jpbs.20200001
  • Shatte, A. B. R., Hutchinson, D. M., & Teague, S. J. (2019). Machine learning in mental health: A scoping review of methods and applications. Psychological Medicine, 49(9), 1426–1448. https://doi.org/10.1017/S0033291719000151
  • Shi, J., Zheng, X., Li, Y., Zhang, Q., & Ying, S. (2018). Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease. IEEE Journal of Biomedical and Health Informatics, 22(1), 173–183. https://doi.org/10.1109/JBHI.2017.2655720
  • Shin, D. (2021). The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI. International Journal of Human-Computer Studies, 146, 102551. https://doi.org/10.1016/j.ijhcs.2020.102551
  • Sookrah, R., Dhowtal, J. D., & Nagowah, S. D. (2019). A DASH diet recommendation system for hypertensive patients using machine learning [Paper presentation]. 2019 7th International Conference on Information and Communication Technology, ICoICT 2019 (pp. 1–6). https://doi.org/10.1109/ICoICT.2019.8835323
  • Sowah, R. A., Bampoe-Addo, A. A., Armoo, S. K., Saalia, F. K., Gatsi, F., & Sarkodie-Mensah, B. (2020). Design and development of diabetes management system using machine learning. International Journal of Telemedicine and Applications, 2020, 8870141. https://doi.org/10.1155/2020/8870141
  • Spanakis, G., Weiss, G., Boh, B., Lemmens, L., & Roefs, A. (2017). Machine learning techniques in eating behavior e-coaching: Balancing between generalization and personalization. Personal and Ubiquitous Computing, 21(4), 645–659. https://doi.org/10.1007/s00779-017-1022-4
  • Stafford, I. S., Kellermann, M., Mossotto, E., Beattie, R. M., MacArthur, B. D., & Ennis, S. (2020). A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. NPJ Digital Medicine, 3(1), 1–11. https://doi.org/10.1038/s41746-020-0229-3
  • Stamate, C., Magoulas, G. D., Kueppers, S., Nomikou, E., Daskalopoulos, I., Jha, A., Pons, J. S., Rothwell, J., Luchini, M. U., Moussouri, T., Iannone, M., & Roussos, G. (2018). The cloudUPDRS app: A medical device for the clinical assessment of Parkinson’s disease. Pervasive and Mobile Computing, 43, 146–166. https://doi.org/10.1016/j.pmcj.2017.12.005
  • Stamate, C., Magoulas, G. D., Kueppers, S., Nomikou, E., Daskalopoulos, I., Luchini, M. U., Moussouri, T., & Roussos, G. (2017). Deep learning Parkinson’s from smartphone data [Paper presentation]. 2017 IEEE International Conference on Pervasive Computing and Communications, PerCom 2017 (pp. 31–40). https://doi.org/10.1109/PERCOM.2017.7917848
  • Stark, B., & Samarah, M. (2019). Mac7: Adaptive Smart Toothbrush [Paper presentation]. Proceedings - 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2018 (pp. 153–158). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/SDPC.2018.8664828
  • Suh, M., Nahapetian, A., Woodbridge, J., Rofouei, M., & Sarrafzadeh, M. (2012). Machine learning-based adaptive wireless interval training guidance system. Mobile Networks and Applications, 17(2), 163–177. https://doi.org/10.1007/s11036-011-0331-5
  • Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press.
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2014). Going deeper with convolutions [Paper presentation]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June-2015 (pp. 1–9).
  • Thieme, A., Belgrave, D., & Doherty, G. (2020). Machine learning in mental health: A systematic review of the HCI literature to support the development of effective and implementable ML systems. ACM Transactions on Computer-Human Interaction, 27(5), 1–53. https://doi.org/10.1145/3398069
  • Thomsen, K., Iversen, L., Titlestad, T. L., & Winther, O. (2020). Systematic review of machine learning for diagnosis and prognosis in dermatology. Journal of Dermatological Treatment, 31(5), 496–510. https://doi.org/10.1080/09546634.2019.1682500
  • Thyde, D. N., Mohebbi, A., Bengtsson, H., Jensen, M. L., & Mørup, M. (2021). Machine learning-based adherence detection of type 2 diabetes patients on once-daily basal insulin injections. Journal of Diabetes Science and Technology, 15(1), 98–108. https://doi.org/10.1177/1932296820912411
  • Tolkachev, A., Sirazitdinov, I., Kholiavchenko, M., Mustafaev, T., & Ibragimov, B. (2021). Deep learning for diagnosis and segmentation of pneumothorax: The results on the Kaggle competition and validation against radiologists. IEEE Journal of Biomedical and Health Informatics, 25(5), 1660–1672. https://doi.org/10.1109/JBHI.2020.3023476
  • Triantafyllidis, A. K., & Tsanas, A. (2019). Applications of machine learning in real-life digital health interventions: Review of the literature. Journal of Medical Internet Research, 21(4), e12286. https://doi.org/10.2196/12286
  • Tuti, T., Paton, C., & Winters, N. (2020). Learning to represent healthcare providers knowledge of neonatal emergency care: Findings from a smartphone-based learning intervention targeting clinicians from LMICs [Paper presentation]. ACM International Conference Proceeding Series (pp. 320–329). https://doi.org/10.1145/3375462.3375479
  • Van Woensel, W., Roy, P. C., Abidi, S. S. R., & Abidi, S. R. (2020). Indoor location identification of patients for directing virtual care: An AI approach using machine learning and knowledge-based methods. Artificial Intelligence in Medicine, 108, 101931. https://doi.org/10.1016/j.artmed.2020.101931
  • Venne, J., Busshoff, U., Poschadel, S., Menschel, R., Evangelatos, N., Vysyaraju, K., & Brand, A. (2020). International consortium for personalized medicine: An international survey about the future of personalized medicine. Personalized Medicine, 17(2), 89–100. https://doi.org/10.2217/pme-2019-0093
  • Vicente, A. M., Ballensiefen, W., & Jönsson, J. I. (2020). How personalised medicine will transform healthcare by 2030: The ICPerMed vision. Journal of Translational Medicine, 18(1), 180. https://doi.org/10.1186/s12967-020-02316-w
  • Visalakshi, S., & Radha, V. (2015). A literature review of feature selection techniques and applications: Review of feature selection in data mining [Paper presentation]. 2014 IEEE International Conference on Computational Intelligence and Computing Research, IEEE ICCIC 2014. https://doi.org/10.1109/ICCIC.2014.7238499
  • Wahle, F., Kowatsch, T., Fleisch, E., Rufer, M., & Weidt, S. (2016). Mobile sensing and support for people with depression: A pilot trial in the wild. JMIR mHealth and uHealth, 4(3), e111. https://doi.org/10.2196/mhealth.5960
  • Wang, L., Fan, R., Zhang, C., Hong, L., Zhang, T., Chen, Y., Liu, K., Wang, Z., & Zhong, J. (2020). Applying machine learning models to predict medication nonadherence in Crohn’s disease maintenance therapy. Patient Preference and Adherence, 14, 917–926. https://doi.org/10.2147/PPA.S253732
  • Wang, S., Sporrel, K., van Hoof, H., Simons, M., de Boer, R. D. D., Ettema, D., Nibbeling, N., Deutekom, M., & Kröse, B. (2021). Reinforcement learning to send reminders at right moments in smartphone exercise application: A feasibility study. International Journal of Environmental Research and Public Health, 18(11), 6059. https://doi.org/10.3390/ijerph18116059
  • Waring, J., Lindvall, C., & Umeton, R. (2020). Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artificial Intelligence in Medicine, 104, 101822. https://doi.org/10.1016/j.artmed.2020.101822
  • Wittig, M., & Wittig, A. (2018). Amazon web services in action (2nd ed.). Simon and Schuster.
  • Xu, P., Chen, D., Liu, X., & Loo, J. (2019). Image-based dietary assessment system for chinese children [Paper presentation]. Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018 (pp. 5471–5473). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/BigData.2018.8622579
  • Yang, J., Xiao, W., Lu, H., & Barnawi, A. (2020). Wireless high-frequency NLOS monitoring system for heart disease combined with hospital and home. Future Generation Computer Systems, 110, 772–780. https://doi.org/10.1016/j.future.2019.11.001
  • Yang, W., Chuah, M. C., & Du, L. (2020). M&M: Deep learning aided multi-facet mental health support tool for college students [Paper presentation]. Proceedings of Deep Learning for Wellbeing Applications Leveraging Mobile Devices and Edge Computing (pp. 10–15). https://doi.org/10.1145/3396868.3400898
  • Yates, D., & Islam, M. Z. (2019). Readiness of smartphones for data collection and data mining with an example application in mental health. In Australasian Conference on Data Mining (AusDM) (pp. 235–246). Springer. https://doi.org/10.1007/978-981-15-1699-3_19
  • Ying, Z., Cao, S., Xu, S., Liu, X., Lyu, L., Chen, C., & Wang, L. (2021). Privacy-preserving optimal insulin dosing decision. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021 (pp. 2640–2644). https://doi.org/10.1109/icassp39728.2021.9414807
  • Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A., Ben-Yacov, O., Lador, D., Avnit-Sagi, T., Lotan-Pompan, M., Suez, J., Mahdi, J. A., Matot, E., Malka, G., Kosower, N., Rein, M., Zilberman-Schapira, G., Dohnalová, L., Pevsner-Fischer, M., … Segal, E. (2015). Personalized nutrition by prediction of glycemic responses. Cell, 163(5), 1079–1094. https://doi.org/10.1016/j.cell.2015.11.001
  • Zeng, J. (2020). Developing a machine learning tool for dynamic cancer treatment strategies. Proceedings of the AAAI Conference on Artificial Intelligence, 34(10), 13742–13743. https://doi.org/10.1609/aaai.v34i10.7143
  • Zhang, J. (2010). Multi-source remote sensing data fusion: Status and trends. International Journal of Image and Data Fusion, 1(1), 5–24. https://doi.org/10.1080/19479830903561035
  • Zhang, Y., Chen, K., Weng, Y., Chen, Z., Zhang, J., & Hubbard, R. (2022). An intelligent early warning system of analyzing Twitter data using machine learning on COVID-19 surveillance in the US. Expert Systems with Applications, 198, 116882. https://doi.org/10.1016/j.eswa.2022.116882
  • Zhou, X., Li, Y., & Liang, W. (2020). CNN-RNN based intelligent recommendation for online medical pre-diagnosis support. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(3), 912–921. https://doi.org/10.1109/TCBB.2020.2994780
  • Zhu, T., Li, K., Herrero, P., & Georgiou, P. (2021). Deep learning for diabetes: A systematic review. IEEE Journal of Biomedical and Health Informatics, 25(7), 2744–2757. https://doi.org/10.1109/JBHI.2020.3040225
  • Zingg, A., Singh, T., & Myneni, S. (2021). Analysis of online peripartum depression communities: Application of multilabel text classification techniques to inform digitally-mediated prevention and management. Front Digit Health, 3, 653769. https://doi.org/10.3389/fdgth.2021.653769

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.