370
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Hybrid Brain–Computer Interface Spellers: A Walkthrough Recent Advances in Signal Processing Methods and Challenges

ORCID Icon & ORCID Icon
Pages 3096-3113 | Received 04 Oct 2021, Accepted 20 Jun 2022, Published online: 29 Jul 2022

References

  • Achanccaray, D., Chau, J. M., Pirca, J., Sepulveda, F., & Hayashibe, M. (2019, March). Assistive robot arm controlled by a P300-based brain machine interface for daily activities. In Jose Carmena (Ed.), 2019 9th international IEEE/EMBS conference on neural engineering (NER) (pp. 1171–1174). IEEE. https://doi.org/10.1109/NER.2019.8717042
  • Aggarwal, S., & Chugh, N. (2019). Signal processing techniques for motor imagery brain computer interface: A review. Array, 1-2, 100003. https://doi.org/10.1016/j.array.2019.100003
  • Al-Fahoum, A. S., & Al-Fraihat, A. A. (2014). Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN Neuroscience, 2014, 1–7. https://doi.org/10.1155/2014/730218
  • Allison, B., Luth, T., Valbuena, D., Teymourian, A., Volosyak, I., & Graser, A. (2010). BCI demographics: How many (and what kinds of) people can use an SSVEP BCI? IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 18(2), 107–116. https://doi.org/10.1109/tnsre.2009.2039495
  • Allison, B. Z., Brunner, C., Kaiser, V., Müller-Putz, G. R., Neuper, C., & Pfurtscheller, G. (2010). Toward a hybrid brain–computer interface based on imagined movement and visual attention. Journal of Neural Engineering, 7(2), 026007. https://doi.org/10.1088/1741-2560/7/2/026007
  • Allison, B. Z., Jin, J., Zhang, Y., & Wang, X. (2014). A four-choice hybrid P300/SSVEP BCI for improved accuracy. Brain-Computer Interfaces, 1(1), 17–26. https://doi.org/10.1080/2326263X.2013.869003
  • Alruwaili, M. (2021). An intelligent medical imaging approach for various blood structure classifications. Complexity, 2021, 1–10. https://doi.org/10.1155/2021/5573300
  • Anderson, T. W. (1984). An introduction to multivariate statistical analysis (2nd ed.). Wiley.
  • Aydemir, O. (2016). Determination of the two most discriminative directions of the cursor movement imagery tasks. Biomedical Research; India.
  • Bascil, M. S., Tesneli, A. Y., & Temurtas, F. (2016). Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN. Australasian Physical & Engineering Sciences in Medicine, 39(3), 665–676. https://doi.org/10.1007/s13246-016-0462-x
  • Bashashati, A., Fatourechi, M., Ward, R. K., & Birch, G. E. (2007). A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. Journal of Neural Engineering, 4(2), R32–R57. https://doi.org/10.1088/1741-2560/4/2/r03
  • Bevilacqua, M., Perdikis, S., & Millán, J. D. R. (2020). On error-related potentials during sensorimotor-based brain-computer interface: Explorations with a pseudo-online brain-controlled speller. IEEE Open Journal of Engineering in Medicine and Biology, 1, 17–22. https://doi.org/10.1109/OJEMB.2019.2962879
  • Bin, G., Gao, X., Yan, Z., Hong, B., & Gao, S. (2009). An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method. Journal of Neural Engineering, 6(4), 046002. https://doi.org/10.1088/1741-2560/6/4/046002
  • Chang, M. H., Lee, J. S., Heo, J., & Park, K. S. (2016). Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI. Journal of Neuroscience Methods, 258, 104–113. https://doi.org/10.1016/j.jneumeth.2015.11.001
  • Chen, X., Wang, Y., Gao, S., Jung, T. P., & Gao, X. (2015). Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface. Journal of Neural Engineering, 12(4), 046008. https://doi.org/10.1088/1741-2560/12/4/046008
  • Chun, J., Bae, B., & Jo, S. (2016, February). BCI based hybrid interface for 3D object control in virtual reality). In General chair: Seong-Whan Lee, Klaus-Robert Müller, 2016 4th international winter conference on brain-computer interface (BCI) (pp. 1–4). IEEE. https://doi.org/10.1109/IWW-BCI.2016.7457461
  • Combaz, A., Chumerin, N., Manyakov, N. V., Robben, A., Suykens, J. A., & Van Hulle, M. M. (2012). Towards the detection of error-related potentials and its integration in the context of a P300 speller brain–computer interface. Neurocomputing, 80, 73–82. https://doi.org/10.1016/j.neucom.2011.09.013
  • Donchin, E., Spencer, K. M., & Wijesinghe, R. (2000). The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Transactions on Rehabilitation Engineering : a Publication of the IEEE Engineering in Medicine and Biology Society, 8(2), 174–179. https://doi.org/10.1109/86.847808
  • Dornhege, G., Millán, J. D. R., Hinterberger, T., McFarland, D. J., & Müller, K. R. (2007). An introduction to brain-computer interfacing. MIT Press.
  • Draper, N. R., & Smith, H. (1998). Applied regression analysis (Vol. 326). John Wiley & Sons.
  • Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6), 510–523. https://doi.org/10.1016/0013-4694(88)90149-6
  • Fazel-Rezai, R., Allison, B. Z., Guger, C., Sellers, E. W., Kleih, S. C., & Kübler, A. (2012). P300 brain computer interface: Current challenges and emerging trends. Frontiers in Neuroengineering, 5, 14. https://doi.org/10.3389/fneng.2012.00014
  • Frye, G. E., Hauser, C. K., Townsend, G., & Sellers, E. W. (2011). Suppressing flashes of items surrounding targets during calibration of a P300-based brain–computer interface improves performance. Journal of Neural Engineering, 8(2), 025024. https://doi.org/10.1088/1741-2560/8/2/025024
  • Gao, Q., Zhang, Y., Wang, Z., Dong, E., Song, X., & Song, Y. (2019). Channel projection-based CCA target identification method for an SSVEP-based BCI system of quadrotor helicopter control. Computational Intelligence and Neuroscience, 2019, 2361282. https://doi.org/10.1155/2019/2361282
  • Gao, Z., Zhang, K., Dang, W., Yang, Y., Wang, Z., Duan, H., & Chen, G. (2018). An adaptive optimal-kernel time-frequency representation-based complex network method for characterizing fatigued behavior using the SSVEP-based BCI system. Knowledge-Based Systems, 152, 163–171. https://doi.org/10.1016/j.knosys.2018.04.013
  • Garcia, G. N., Ebrahimi, T., Vesin, J. M. (2003, March). Support vector EEG classification in the Fourier and time-frequency correlation domains. In Laura J. Wolf, Jodi L. Strock, First international IEEE EMBS conference on neural engineering, 2003. Conference proceedings (pp. 591–594). IEEE.
  • Gilbert, F., Cook, M., O’Brien, T., & Illes, J. (2019). Embodiment and estrangement: results from a first-in-human “intelligent BCI” trial. Science and Engineering Ethics, 25(1), 83–96. https://doi.org/10.1007/s11948-017-0001-5
  • Hoffmann, U., Vesin, J. M., Ebrahimi, T., & Diserens, K. (2008). An efficient P300-based brain–computer interface for disabled subjects. Journal of Neuroscience Methods, 167(1), 115–125. https://doi.org/10.1016/j.jneumeth.2007.03.005
  • Höhne, J., & Tangermann, M. (2014). Towards user-friendly spelling with an auditory brain-computer interface: The charstreamer paradigm. PLoS One, 9(6), e98322. https://doi.org/10.1371/journal.pone.0098322
  • Hwang, H. J., Kim, S., Choi, S., & Im, C. H. (2013). EEG-based brain-computer interfaces: a thorough literature survey. International Journal of Human-Computer Interaction, 29(12), 814–826. https://doi.org/10.1080/10447318.2013.780869
  • Hwang, J. Y., Lee, M. H., & Lee, S. W. (2017, January). A brain-computer interface speller using peripheral stimulus-based SSVEP and P300. In General chairs: Seong-Whan Lee & Klaus-Robert Müller (Eds.), 2017 5th international winter conference on brain-computer interface (BCI) (pp. 77–78). IEEE. https://doi.org/10.1109/IWW-BCI.2017.7858164
  • Jalilpour, S., Sardouie, S. H., & Mijani, A. (2020). A novel hybrid BCI speller based on RSVP and SSVEP paradigm. Computer Methods and Programs in Biomedicine, 187, 105326. https://doi.org/10.1016/j.cmpb.2020.105326
  • Joadder, M. A., Siuly, S., Kabir, E., Wang, H., & Zhang, Y. (2019). A new design of mental state classification for subject independent BCI systems. IRBM, 40(5), 297–305. https://doi.org/10.1016/j.irbm.2019.05.004
  • Kalika, D., Collins, L., Caves, K., & Throckmorton, C. (2017). Fusion of P300 and eye-tracker data for spelling using BCI2000. Journal of Neural Engineering, 14(5), 056010. https://doi.org/10.1088/1741-2552/aa776b
  • Katyal, A., & Singla, R. (2020). A novel hybrid paradigm based on steady state visually evoked potential & P300 to enhance information transfer rate. Biomedical Signal Processing and Control, 59, 101884. https://doi.org/10.1016/j.bspc.2020.101884
  • Katyal, E. A., & Singla, R. (2021). EEG-based hybrid QWERTY mental speller with high information transfer rate. Medical & Biological Engineering & Computing, 59(3), 633–661. https://doi.org/10.1007/s11517-020-02310-w
  • Kaur, B., Singh, D., & Roy, P. P. (2018). EEG based emotion classification mechanism in BCI. Procedia Computer Science, 132, 752–758. https://doi.org/10.1016/j.procs.2018.05.087
  • Kharchenko, S., Meshcheryakov, R., Turovsky, Y., & Volf, D. (2021). Implementation of robot–human control bio-interface when highlighting visual-evoked potentials based on multivariate synchronization index. In Andrey Ronzhin & Vladislav Shishlakov (Eds.), Proceedings of 15th International Conference on Electromechanics and Robotics “Zavalishin’s Readings” (pp. 225–236). Springer.
  • Kim, K. T., & Lee, S. W. (2014, February). Steady-state somatosensory evoked potentials for brain-controlled wheelchair. In 2014 international winter workshop on brain-computer interface (BCI) (pp. 1–2). IEEE. https://doi.org/10.1109/iww-BCI.2014.6782570
  • Kreilinger, A., Kaiser, V., Breitwieser, C., Williamson, J., Neuper, C., & Müller-Putz, G. (2011). Switching between manual control and brain-computer interface using long term and short term quality measures. Frontiers in Neuroscience, 5, 147. https://doi.org/10.3389/fnins.2011.00147
  • Krusienski, D. J., Sellers, E. W., Cabestaing, F., Bayoudh, S., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2006). A comparison of classification techniques for the P300 Speller. Journal of Neural Engineering, 3(4), 299–305. https://doi.org/10.1088/1741-2560/3/4/007
  • Lee, J. H., Lim, J. H., Hwang, H. J., Im, C. H. (2013, July). Development of a hybrid mental speller combining EEG-based brain-computer interface and webcam-based eye-tracking. In Nigel Lovell (Ed.), 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 2240–2242). IEEE.
  • Lee, M. H., Williamson, J., Won, D. O., Fazli, S., & Lee, S. W. (2018). A high performance spelling system based on EEG-EOG signals with visual feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 26(7), 1443–1459. https://doi.org/10.1109/tnsre.2018.2839116
  • Leeb, R., Sagha, H., Chavarriaga, R., & del R Millán, J. (2011). A hybrid brain–computer interface based on the fusion of electroencephalographic and electromyographic activities. Journal of Neural Engineering, 8(2), 025011. https://doi.org/10.1088/1741-2560/8/2/025011
  • Lei, X., Yang, P., & Yao, D. (2009). An empirical Bayesian framework for brain–computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 17(6), 521–529. https://doi.org/10.1109/tnsre.2009.2027705
  • Lim, J. H., Lee, J. H., Hwang, H. J., Kim, D. H., & Im, C. H. (2015). Development of a hybrid mental spelling system combining SSVEP-based brain–computer interface and webcam-based eye tracking. Biomedical Signal Processing and Control, 21, 99–104. https://doi.org/10.1016/j.bspc.2015.05.012
  • Lin, K., Chen, X., Huang, X. et al. (2015). A Hybrid BCI speller based on the combination of EMG envelopes and SSVEP. Appl Inform 2, 1. https://doi.org/10.1186/s40535-014-0004-0
  • Lin, K., Cinetto, A., Wang, Y., Chen, X., Gao, S., & Gao, X. (2016). An online hybrid BCI system based on SSVEP and EMG. Journal of Neural Engineering, 13(2), 026020. https://doi.org/10.1088/1741-2560/13/2/026020
  • Lin, X., Chen, Z., Xu, K., Zhang, S. (2019, July). Development of a high-speed mental spelling system combining eye tracking and SSVEP-based BCI with high scalability. In Riccardo Barbieri (Ed.), 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 6318–6322). IEEE.
  • Lin, Z., Zhang, C., Wu, W., & Gao, X. (2006). Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Transactions on Bio-Medical Engineering, 53(12 Pt 2), 2610–2614. https://doi.org/10.1109/tbme.2006.886577
  • Mahl, C., Hayrettin, G., Danny, P., Marieke, E., Lasse, S., Matthieu, D., & Alexandra, A. (2010). Bacteriahunt: Evaluating multi-paradigm BCI interaction. Journal on Multimodal User Interfaces, 1(4), 11–25. https://doi.org/10.1007/s12193-010-0046-0
  • Mannan, M. M. N., Kamran, M. A., Kang, S., Choi, H. S., & Jeong, M. Y. (2020). A hybrid speller design using eye tracking and SSVEP brain–computer interface. Sensors, 20(3), 891. https://doi.org/10.3390/s20030891
  • Maslen, H., & Rainey, S. (2021). Control and ownership of neuroprosthetic speech. Philosophy & Technology, 34(3), 425–445. https://doi.org/10.1007/s13347-019-00389-0
  • Matsumoto, M., & Hori, J. (2014). Classification of silent speech using support vector machine and relevance vector machine. Applied Soft Computing, 20, 95–102. https://doi.org/10.1016/j.asoc.2013.10.023
  • Mora-Cortes, A., Manyakov, N. V., Chumerin, N., & Van Hulle, M. M. (2014). Language model applications to spelling with brain-computer interfaces. Sensors, 14(4), 5967–5993. https://doi.org/10.3390/s140405967
  • Mühl, C., Allison, B., Nijholt, A., & Chanel, G. (2014). A survey of affective brain computer interfaces: Principles, state-of-the-art, and challenges. Brain-Computer Interfaces, 1(2), 66–84. https://doi.org/10.1080/2326263x.2014.912881
  • Mühl, C., Gürkök, H., Plass-Oude Bos, D., Thurlings, M. E., Scherffig, L., Duvinage, M., Elbakyan, A. A., Kang, S., Poel, M., & Heylen, D. (2010). Bacteria hunt. Journal on Multimodal User Interfaces, 4(1), 11–25. https://doi.org/10.1007/s12193-010-0046-0
  • Müller-Gerking, J., Pfurtscheller, G., & Flyvbjerg, H. (1999). Designing optimal spatial filters for single-trial EEG classification in a movement task. Clinical Neurophysiology, 110(5), 787–798. https://doi.org/10.1016/S1388-2457(98)00038-8
  • Müller-Putz, G. R., Leeb, R., Millán, J. D. R., Horki, P., Kreilinger, A., Bauernfeind, G., Allison, B. Z., Brunner, C., & Scherer, R. (2012). Principles of hybrid brain–computer interfaces. In Rendan Z. Allison, Stephen Dunne, Robert Leeb, José Del R. Millán, & Anton Nijholt (Eds.), Towards practical brain-computer interfaces (pp. 355–373). Springer.
  • Müller-Putz, G. R., Scherer, R., Brauneis, C., & Pfurtscheller, G. (2005). Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. Journal of Neural Engineering, 2(4), 123–130. https://doi.org/10.1088/1741-2560/2/4/008
  • Nakanishi, M., Wang, Y., Chen, X., Wang, Y. T., Gao, X., & Jung, T. P. (2018). Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Transactions on Bio-Medical Engineering, 65(1), 104–112. https://doi.org/10.1109/tbme.2017.2694818
  • Nijboer, F., Plass-Oude Bos, D., Blokland, Y., van Wijk, R., & Farquhar, J. (2014). Design requirements and potential target users for brain-computer interfaces–recommendations from rehabilitation professionals. Brain-Computer Interfaces, 1(1), 50–61. https://doi.org/10.1080/2326263X.2013.877210
  • Pan, J., Li, Y., Wang, J. (2016, July). An EEG-based brain-computer interface for emotion recognition. In Pablo A. Estevez (Ed.), 2016 international joint conference on neural networks (IJCNN) (pp. 2063–2067). IEEE.
  • Panicker, R. C., Puthusserypady, S., & Sun, Y. (2011). An asynchronous P300 BCI with SSVEP-based control state detection. IEEE Transactions on Bio-Medical Engineering, 58(6), 1781–1788. https://doi.org/10.1109/tbme.2011.2116018
  • Park, S. (2021). Development of an online home appliance control system for the elderly using augmented reality and an SSVEP-based brain-computer interface [Doctoral dissertation]. 한양대학교.
  • Perdikis, S., Leeb, R., Williamson, J., Ramsay, A., Tavella, M., Desideri, L., Hoogerwerf, E.-J., Al-Khodairy, A., Murray-Smith, R., & Millán, J. D. R. (2014). Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller. Journal of Neural Engineering, 11(3), 036003. https://doi.org/10.1088/1741-2560/11/3/036003
  • Perseh, B., & Sharafat, A. R. (2012). An efficient P300-based BCI using wavelet features and IBPSO-based channel selection. Journal of Medical Signals and Sensors, 2(3), 128–143. https://doi.org/10.4103/2228-7477.111994
  • Pfurtscheller, G., Allison, B. Z., Bauernfeind, G., Brunner, C., Solis Escalante, T., Scherer, R., & Birbaumer, N. (2010). The hybrid BCI. Frontiers in Neuroscience, 4, 3. https://doi.org/10.3389/fnpro.2010.00003
  • Pfurtscheller, G., & Neuper, C. (2001). Motor imagery and direct brain-computer communication. Proceedings of the IEEE, 89(7), 1123–1134. https://doi.org/10.1109/5.939829
  • Postelnicu, C. C., & Talaba, D. (2013). P300-based brain-neuronal computer interaction for spelling applications. IEEE Transactions on Bio-Medical Engineering, 60(2), 534–543. https://doi.org/10.1109/tbme.2012.2228645
  • Rao, R. P. (2013). Brain-computer interfacing: An introduction. Cambridge University Press.
  • Regan, D. (1989). Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine (p. 672). Elsevier.
  • Reshmi, G., & Amal, A. (2013, August). Design of a BCI system for piloting a wheelchair using five class MI Based EEG. In Dhiraj K. Pradhan, Vinod A. Prasad, & J. Isaac (Eds.), 2013 third international conference on advances in computing and communications (pp. 25–28). IEEE.
  • Rezeika, A., Benda, M., Stawicki, P., Gembler, F., Saboor, A., & Volosyak, I. (2018a, October). 30-targets hybrid BNCI speller based on SSVEP and EMG. In Yutaka Hata (Ed.), 2018 IEEE international conference on systems, man, and cybernetics (SMC) (pp. 153–158). IEEE. https://doi.org/10.1109/SMC.2018.00037
  • Rezeika, A., Benda, M., Stawicki, P., Gembler, F., Saboor, A., & Volosyak, I. (2018b). Brain–computer interface spellers: A review. Brain Sciences, 8(4), 57. https://doi.org/10.3390/brainsci8040057
  • Riccio, A., Holz, E. M., Aricò, P., Leotta, F., Aloise, F., Desideri, L., Rimondini, M., Kübler, A., Mattia, D., & Cincotti, F. (2015). Hybrid P300-based brain-computer interface to improve usability for people with severe motor disability: Electromyographic signals for error correction during a spelling task. Archives of Physical Medicine and Rehabilitation, 96(3 Suppl), S54–S61. https://doi.org/10.1016/j.apmr.2014.05.029
  • Riechmann, H., Hachmeister, N., Ritter, H., & Finke, A. (2011, April). Asynchronous, parallel on-line classification of P300 and ERD for an efficient hybrid BCI. In Metin Akay (Ed.), 2011 5th international IEEE/EMBS conference on neural engineering (pp. 412–415). IEEE.
  • Roula, M. A., Kulon, J., & Mamatjan, Y. (2012, June). Brain-computer interface speller using hybrid P300 and motor imagery signals. In Jaydev P. Desai, Louis Phee Soo Jay, & Loredana Zollo (Eds.), 2012 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob) (pp. 224–227). IEEE.
  • Roy, R. N., Charbonnier, S., & Bonnet, S. (2014). Detection of mental fatigue using an active BCI inspired signal processing chain. IFAC Proceedings Volumes, 47(3), 2963–2968. https://doi.org/10.3182/20140824-6-ZA-1003.00897
  • Sadeghi, S., & Maleki, A. (2018). Recent advances in hybrid brain-computer interface systems: a technological and quantitative review. Basic and Clinical Neuroscience, 9(5), 373–388. https://doi.org/10.32598/bcn.9.5.373
  • Salvaris, M., & Sepulveda, F. (2009, April). Wavelets and ensemble of FLDs for P300 classification. In Metin Akay (Ed.), 2009 4th international IEEE/EMBS conference on neural engineering (pp. 339–342). IEEE.
  • Saravanakumar, D., & Reddy, M. R. (2019). A high performance hybrid SSVEP based BCI speller system. Advanced Engineering Informatics, 42, 100994. https://doi.org/10.1016/j.aei.2019.100994
  • Saravanakumar, D., & Reddy, M. R. (2020). A virtual speller system using SSVEP and electrooculogram. Advanced Engineering Informatics, 44, 101059. https://doi.org/10.1016/j.aei.2020.101059
  • Shukla, P. K., Chaurasiya, R. K., Verma, S., & Sinha, G. R. (2021). A thresholding-free state detection approach for home appliance control using P300-based BCI. IEEE Sensors Journal, 21(15), 16927–16936. https://doi.org/10.1109/JSEN.2021.3078512
  • Siddiqi, M. H., Ali, R., Khan, A. M., Park, Y. T., & Lee, S. (2015). Human facial expression recognition using stepwise linear discriminant analysis and hidden conditional random fields. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 24(4), 1386–1398. https://doi.org/10.1109/tip.2015.2405346
  • Siddiqi, M. H., Ali, R., Rana, M., Hong, E. K., Kim, E. S., & Lee, S. (2014). Video-based human activity recognition using multilevel wavelet decomposition and stepwise linear discriminant analysis. Sensors, 14(4), 6370–6392. https://doi.org/10.3390/s140406370
  • Singla, R., Khosla, A., & Jha, R. (2014). Influence of stimuli colour in SSVEP-based BCI wheelchair control using support vector machines. Journal of Medical Engineering & Technology, 38(3), 125–134. https://doi.org/10.3109/03091902.2014.884179
  • Stawicki, P., Gembler, F., Rezeika, A., & Volosyak, I. (2017). A novel hybrid mental spelling application based on eye tracking and SSVEP-based BCI. Brain Sciences, 7(12), 35. https://doi.org/10.3390/brainsci7040035
  • Su, Y., Qi, Y., Luo, J-x., Wu, B., Yang, F., Li, Y., Zhuang, Y-t., Zheng, X-x., & Chen, W-d. (2011). A hybrid brain-computer interface control strategy in a virtual environment. Journal of Zhejiang University SCIENCE C, 12(5), 351–361. https://doi.org/10.1631/jzus.C1000208
  • Subasi, A. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 32(4), 1084–1093. https://doi.org/10.1016/j.eswa.2006.02.005
  • Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150(3700), 1187–1188. https://doi.org/10.1126/science.150.3700.1187
  • Syan, C. S., & Harnarinesingh, R. E. (2016). Investigating the feasibility of BCI-based social media interaction. In Dipak Kumar Mandal & Chanan Singh Syan (Eds.), CAD/CAM, robotics and factories of the future (pp. 51–57). Springer.
  • Tello, R. J., Bissoli, A. L., Ferrara, F., Müller, S., Ferreira, A., & Bastos-Filho, T. F. (2015). Development of a human machine interface for control of robotic wheelchair and smart environment. IFAC-PapersOnLine, 48(19), 136–141. https://doi.org/10.1016/j.ifacol.2015.12.023
  • Townsend, G., LaPallo, B. K., Boulay, C. B., Krusienski, D. J., Frye, G. E., Hauser, C. K., Schwartz, N. E., Vaughan, T. M., Wolpaw, J. R., & Sellers, E. W. (2010). A novel P300-based brain–computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 121(7), 1109–1120. https://doi.org/10.1016/j.clinph.2010.01.030
  • van Gerven, M., Farquhar, J., Schaefer, R., Vlek, R., Geuze, J., Nijholt, A., Ramsey, N., Haselager, P., Vuurpijl, L., Gielen, S., & Desain, P. (2009). The brain–computer interface cycle. Journal of Neural Engineering, 6(4), 041001. https://doi.org/10.1088/1741-2560/6/4/041001
  • Wang, H. T., Smallwood, J., Mourao-Miranda, J., Xia, C. H., Satterthwaite, T. D., Bassett, D. S., & Bzdok, D. (2018). Finding the needle in high-dimensional haystack: A tutorial on canonical correlation analysis. https://doi.org/10.48550/arXiv.1812.02598
  • Wang, K., Xu, M., Wang, Y., Zhang, S., Chen, L., & Ming, D. (2020). Enhance decoding of pre-movement EEG patterns for brain–computer interfaces. Journal of Neural Engineering, 17(1), 016033. https://doi.org/10.1088/1741-2552/ab598f
  • Wang, K., Zhai, D. H., Xiong, Y., Hu, L., & Xia, Y. (2022). An MVMD-CCA recognition algorithm in SSVEP-based BCI and its application in robot control. IEEE Transactions on Neural Networks and Learning Systems, 33(5), 2159–2167. https://doi.org/10.1109/TNNLS.2021.3135696
  • Wang, M., Daly, I., Allison, B. Z., Jin, J., Zhang, Y., Chen, L., & Wang, X. (2015). A new hybrid BCI paradigm based on P300 and SSVEP. Journal of Neuroscience Methods, 244, 16–25. https://doi.org/10.1016/j.jneumeth.2014.06.003
  • Wang, Y., Veluvolu, K. C., & Lee, M. (2013). Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications. Journal of Neuroengineering and Rehabilitation, 10(1), 109. https://doi.org/10.1186/1743-0003-10-109
  • Wang, Z., Yang, B., Wang, W., Zhang, D., & Gu, X. (2021, October). Brain-controlled robotic arm grasping system based on adaptive TRCA [Paper presentation]. In 2021 10th international conference on computing and pattern recognition (pp. 363–367). https://doi.org/10.1145/3497623.3497682
  • Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 113(6), 767–791. https://doi.org/10.1016/s1388-2457(02)00057-3
  • Wolpaw, J. R., Ramoser, H., McFarland, D. J., & Pfurtscheller, G. (1998). EEG-based communication: improved accuracy by response verification. IEEE Transactions on Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 6(3), 326–333. https://doi.org/10.1109/86.712231
  • Xie, Y., & Li, X. (2015). A brain controlled wheelchair based on common spatial pattern [Paper presentation]. In Tie-niu Tan (Ed.), 2015 international symposium on bioelectronics and bioinformatics (ISBB) (pp. 19–22). IEEE. https://doi.org/10.1109/ISBB.2015.7344913
  • Xu, M., Chen, L., Zhang, L., Qi, H., Ma, L., Tang, J., Wan, B., & Ming, D. (2014). A visual parallel-BCI speller based on the time–frequency coding strategy. Journal of Neural Engineering, 11(2), 026014. https://doi.org/10.1088/1741-2560/11/2/026014
  • Xu, M., Han, J., Wang, Y., Jung, T. P., & Ming, D. (2020). Implementing over 100 command codes for a high-speed hybrid brain-computer interface using concurrent P300 and SSVEP features. IEEE Transactions on Bio-Medical Engineering, 67(11), 3073–3082. https://doi.org/10.1109/tbme.2020.2975614
  • Xu, M., Han, J., Wang, Y., & Ming, D. (2017, May). Optimizing visual comfort and classification accuracy for a hybrid P300-SSVEP brain-computer interface. In Shanbao Tong (Ed.), 2017 8th international IEEE/EMBS conference on neural engineering (NER) (pp. 363–366). IEEE. https://doi.org/10.1109/NER.2017.8008365
  • Xu, M., Qi, H., Wan, B., Yin, T., Liu, Z., & Ming, D. (2013). A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature. Journal of Neural Engineering, 10(2), 026001. https://doi.org/10.1088/1741-2560/10/2/026001
  • Yadav, D., Yadav, S., & Veer, K. (2020). A comprehensive assessment of Brain Computer Interfaces: Recent trends and challenges. Journal of Neuroscience Methods, 346, 108918. https://doi.org/10.1016/j.jneumeth.2020.108918
  • Yao, Z., Wang, Y., Yang, C., Pei, W., Gao, X., & Chen, H. (2019). An online brain-computer interface in mobile virtual reality environments. Integrated Computer-Aided Engineering, 26(4), 345–360. https://doi.org/10.3233/ICA-180586
  • Yin, E., Zeyl, T., Saab, R., Chau, T., Hu, D., & Zhou, Z. (2015). A hybrid brain–computer interface based on the fusion of P300 and SSVEP scores. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 23(4), 693–701. https://doi.org/10.1109/TNSRE.2015.2403270
  • Yin, E., Zhou, Z., Jiang, J., Chen, F., Liu, Y., & Hu, D. (2013). A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm. Journal of Neural Engineering, 10(2), 026012. https://doi.org/10.1088/1741-2560/10/2/026012
  • Yong, X., Fatourechi, M., Ward, R. K., & Birch, G. E. (2011). The design of a point-and-click system by integrating a self-paced brain–computer interface with an Eye-tracker. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 1(4), 590–602. https://doi.org/10.1109/JETCAS.2011.2175589
  • Yu, Y., Jiang, J., Zhou, Z., Yin, E., Liu, Y., Wang, J., & Hu, D. (2016, August). A self-paced brain-computer interface speller by combining motor imagery and P300 potential. In Jonathan Lawry (Ed.), 2016 8th international conference on intelligent human-machine systems and cybernetics (IHMSC) (Vol. 2, pp. 160–163). IEEE. https://doi.org/10.1109/IHMSC.2016.80
  • Yu, Y., Liu, Y., Yin, E., Jiang, J., Zhou, Z., & Hu, D. (2019). An Asynchronous Hybrid Spelling Approach Based on EEG–EOG Signals for Chinese Character Input. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 27(6), 1292–1302. https://doi.org/10.1109/tnsre.2019.2914916
  • Zeyl, T., Yin, E., Keightley, M., & Chau, T. (2016). Adding real-time Bayesian ranks to error-related potential scores improves error detection and auto-correction in a P300 speller. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(1), 46–56. https://doi.org/10.1109/TNSRE.2015.2461495
  • Zhang, D., Yang, B., Gao, S., & Gu, X. (2021, January). Brain-controlled robotic arm based on adaptive FBCCA. In Yueming Wang (Ed.), International workshop on human brain and artificial intelligence (pp. 102–112). Springer.
  • Zhang, Y., Guo, D., Yao, D., & Xu, P. (2017). The extension of multivariate synchronization index method for SSVEP-based BCI. Neurocomputing, 269, 226–231. https://doi.org/10.1016/j.neucom.2017.03.082
  • Zhang, Y., Xie, S. Q., Wang, H., & Zhang, Z. (2021). Data analytics in steady-state visual evoked potential-based brain–computer interface: A review. IEEE Sensors Journal, 21(2), 1124–1138. https://doi.org/10.1109/JSEN.2020.3017491
  • Zhang, Y., Xu, P., Cheng, K., & Yao, D. (2014). Multivariate synchronization index for frequency recognition of SSVEP-based brain–computer interface. Journal of Neuroscience Methods, 221, 32–40. https://doi.org/10.1016/j.jneumeth.2013.07.018
  • Zhao, W., Zhang, X., Qu, J., Xiao, J., & Huang, Y. (2019, July). A virtual smart home based on EEG control. In Li Wenzheng, & Zuo Guomin (Eds.), 2019 IEEE 9th international conference on electronics information and emergency communication (ICEIEC) (pp. 85–89). IEEE. https://doi.org/10.1109/ICEIEC.2019.8784485
  • Zheng, X., Xu, G., Zhang, Y., Liang, R., Zhang, K., Du, Y., Xie, J., & Zhang, S. (2020). Anti-fatigue performance in SSVEP-based visual acuity assessment: A comparison of six stimulus paradigms. Frontiers in Human Neuroscience, 14, 301. https://doi.org/10.3389/fnhum.2020.00301

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.