1,398
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Exploration of the Virtual Reality Teleportation Methods Using Hand-Tracking, Eye-Tracking, and EEG

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4112-4125 | Received 18 Mar 2022, Accepted 29 Jul 2022, Published online: 17 Aug 2022

References

  • Al-Qaysi, Z., Zaidan, B., Zaidan, A., & Suzani, M. (2018). A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations. Computer Methods and Programs in Biomedicine, 164, 221–237.
  • Al-Saegh, A., Dawwd, S. A., & Abdul-Jabbar, J. M. (2021). Deep learning for motor imagery EEG-based classification: A review. Biomedical Signal Processing and Control, 63, 102172. https://doi.org/10.1016/j.bspc.2020.102172
  • Baker, H. (2020, August). The line review: A wonderful Quest experience with hand tracking. https://uploadvr.com/the-line-oculus-quest-hand-tracking/
  • Bernal, G., Hidalgo, N., Russomanno, C., & Maes, P. (2022). Galea: A physiological sensing system for behavioral research in virtual environments. In 2022 IEEE Virtual Reality (VR) (pp. 66–76). IEEE.
  • Blattgerste, J., Renner, P., & Pfeiffer, T. (2018). Advantages of eye-gaze over head-gaze-based selection in virtual and augmented reality under varying field of views. In Proceedings of the Workshop on Communication by Gaze Interaction (pp. 1–9). ACM. https://doi.org/10.1145/3206343.3206349
  • Boletsis, C. (2017). The new era of virtual reality locomotion: A systematic literature review of techniques and a proposed typology. Multimodal Technologies and Interaction, 1(4), 24. https://doi.org/10.3390/mti1040024
  • Boletsis, C. (2020). A user experience questionnaire for VR locomotion: Formulation and preliminary evaluation. In International Conference on Augmented Reality, Virtual Reality and Computer Graphics (pp. 157–167). Springer. https://doi.org/10.1007/978-3-030-58465-8_11
  • Bozgeyikli, E., Raij, A., Katkoori, S., & Dubey, R. (2016a). Locomotion in virtual reality for individuals with autism spectrum disorder. In Proceedings of the 2016 Symposium on Spatial User Interaction (pp. 33–42). ACM. https://doi.org/10.1145/2983310.2985763
  • Bozgeyikli, E., Raij, A., Katkoori, S., & Dubey, R. (2016b). Point & teleport locomotion technique for virtual reality. In Proceedings of the 2016 annual symposium on computer-human interaction in play (pp. 205–216). ACM.
  • Bremer, G., Stein, N., & Lappe, M. (2021). Predicting future position from natural walking and eye movements with machine learning. In 2021 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR) (pp. 19–28). IEEE. https://doi.org/10.1109/AIVR52153.2021.00013
  • Brooke, J. (2013). SUS: A retrospective. Journal of Usability Studies, 8(2), 29–40. https://doi.org/10.5555/2817912.2817913
  • Buttussi, F., & Chittaro, L. (2021). Locomotion in place in virtual reality: A comparative evaluation of joystick, teleport, and leaning. IEEE Transactions on Visualization and Computer Graphics, 27(1), 125–136. https://doi.org/10.1109/TVCG.2019.2928304
  • Caggianese, G., Capece, N., Erra, U., Gallo, L., & Rinaldi, M. (2020). Freehand-steering locomotion techniques for immersive virtual environments: A comparative evaluation. International Journal of Human–Computer Interaction, 36(18), 1734–1755. https://doi.org/10.1080/10447318.2020.1785151
  • Caggianese, G., Gallo, L., & Neroni, P. (2015). Design and preliminary evaluation of free-hand travel techniques for wearable immersive virtual reality systems with egocentric sensing. In International Conference on Augmented and Virtual Reality (pp. 399–408). Springer. https://doi.org/10.1007/978-3-319-22888-4_29
  • Cao, S. (2021, May). I turned on a lamp with my BRAINWAVES at CES 2020-Here’s how it happened. Observer. https://bit.ly/3sFyCMp
  • Cardoso, J. C. (2016). Comparison of gesture, gamepad, and gaze-based locomotion for vr worlds. In Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology (pp. 319–320). ACM.
  • Cattan, G., Mendoza, C., Andreev, A., & Congedo, M. (2018). Recommendations for integrating a p300-based brain computer interface in virtual reality environments for gaming. Computers, 7(2), 34. https://doi.org/10.3390/computers7020034
  • Chen, Y., Yang, C., Ye, X., Chen, X., Wang, Y., & Gao, X. (2021). Implementing a calibration-free SSVEP-based BCI system with 160 targets. Journal of Neural Engineering, 18(4), 046094. https://doi.org/10.1088/1741-2552/ac0bfa
  • Chumerin, N., Manyakov, N. V., Van Vliet, M., Robben, A., Combaz, A., & Van Hulle, M. M. (2013). Steady-state visual evoked potential-based computer gaming on a consumer-grade EEG device. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 100–110. https://doi.org/10.1109/TCIAIG.2012.2225623
  • Daws, R. (2022, January). HTC uses Private 5G and edge computing for high-fidelity wireless VR. TELECOMS. https://bit.ly/3hD5IpL
  • Dehais, F., Ladouce, S., Darmet, L., Nong, T.-V., Ferraro, G., Torre Tresols, J., Labedan, P. (2022). Dual Passive Reactive Brain-Computer Interface: A Novel Approach to Human-Machine Symbiosis. Frontiers in Neuroergonomics, 3, 824780. https://doi.org/10.3389/fnrgo.2022.824780
  • Di Luca, M., Seifi, H., Egan, S., & Gonzalez-Franco, M. (2021). Locomotion vault: The extra mile in analyzing VR locomotion techniques. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1–10). ACM.
  • Ferracani, A., Pezzatini, D., Bianchini, J., Biscini, G., & Del Bimbo, A. (2016). Locomotion by natural gestures for immersive virtual environments. In Proceedings of the 1st international workshop on multimedia alternate realities (pp. 21–24). ACM. https://doi.org/10.1145/2983298.2983307
  • Freiwald, J. P., Ariza, O., Janeh, O., & Steinicke, F. (2020). Walking by cycling: A novel in-place locomotion user interface for seated virtual reality experiences. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–12). ACM. https://doi.org/10.1145/3313831.3376574
  • Gehrke, L., Akman, S., Lopes, P., Chen, A., Singh, A. K., & Chen, H.-T. (2019). Detecting visuo-haptic mismatches in virtual reality using the prediction error negativity of event-related brain potentials. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–11). ACM. https://doi.org/10.1145/3290605.3300657
  • Hayhoe, M. M., & Ballard, D. H. (2011). Mechanisms of gaze control in natural vision. In S. P. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), The Oxford handbook of eye movements (pp. 607–617). Oxford University Press.
  • Hollands, M. A., Patla, A. E., & Vickers, J. N. (2002). “Look where you’re going!”: Gaze behaviour associated with maintaining and changing the direction of locomotion. Experimental Brain Research, 143(2), 221–230.
  • Ian, H. (2020, May). Waltz of the wizard quest hand-tracking impressions: Magic in-hand. https://uploadvr.com/waltz-wizard-magic-quest/
  • IJsselsteijn, W. A., de Kort, Y. A. W., & Poels, K. (2013). The game experience questionnaire. Technische Universiteit Eindhoven.
  • Jacob, R. J. (1990). What you look at is what you get: Eye movement-based interaction techniques. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 11–18). ACM. https://doi.org/10.1145/97243.97246
  • Jacob, R. J. (1991). The use of eye movements in human-computer interaction techniques: what you look at is what you get. ACM Transactions on Information Systems, 9(2), 152–169. https://doi.org/10.1145/123078.128728
  • Jacob, R. J. (1995). Eye tracking in advanced interface design. Virtual Environments and Advanced Interface Design, 258, 288.
  • Jeong, D. K., Yoo, S., & Jang, Y. (2018). VR sickness measurement with EEG using DNN algorithm. In Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology (pp. 1–2). ACM.
  • Jo, A., & Chae, B. Y. (2020). Introduction to real time user interaction in virtual reality powered by brain computer interface technology. In ACM SIGGRAPH 2020 Real-Time Live! (pp. 1–1). ACM. https://doi.org/10.1145/3407662.3407754
  • Kappenman, E. S., Farrens, J. L., Zhang, W., Stewart, A. X., & Luck, S. J. (2021). ERP core: An open resource for human event-related potential research. NeuroImage, 225, 117465. https://doi.org/10.1016/j.neuroimage.2020.117465
  • Kim, D., Kim, J., Shin, J.-E., Yoon, B., Lee, J., & Woo, W. (2022). Effects of virtual room size and objects on relative translation gain thresholds in redirected walking. In 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 379–388). IEEE.
  • Kim, H., & Im, C.-H. (2021). Influence of the number of channels and classification algorithm on the performance robustness to electrode shift in steady-state visual evoked potential-based brain-computer interfaces. Frontiers in Neuroinformatics, 15, 750839. https://doi.org/10.3389/fninf.2021.750839
  • Kim, Y. M., Rhiu, I., & Yun, M. H. (2020). A systematic review of a virtual reality system from the perspective of user experience. International Journal of Human–Computer Interaction, 36(10), 893–910. https://doi.org/10.1080/10447318.2019.1699746
  • Kim, Y. R., Choi, H., Chang, M., & Kim, G. J. (2020). Applying touchscreen based navigation techniques to mobile virtual reality with open clip-on lenses. Electronics, 9(9), 1448. https://doi.org/10.3390/electronics9091448
  • Kitson, A., Hashemian, A. M., Stepanova, E. R., Kruijff, E., & Riecke, B. E. (2017). Lean into it: Exploring leaning-based motion cueing interfaces for virtual reality movement. In 2017 IEEE Virtual Reality (VR) (pp. 215–216). IEEE. https://doi.org/10.1109/VR.2017.7892253
  • Klamka, K., Siegel, A., Vogt, S., Göbel, F., Stellmach, S., & Dachselt, R. (2015). Look & pedal: Hands-free navigation in zoomable information spaces through gaze-supported foot input. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (pp. 123–130). ACM.
  • Kozhemiako, N., Nunes, A. S., Samal, A., Rana, K. D., Calabro, F. J., Hämäläinen, M. S., Khan, S., & Vaina, L. M. (2020). Neural activity underlying the detection of an object movement by an observer during forward self-motion: Dynamic decoding and temporal evolution of directional cortical connectivity. Progress in Neurobiology, 195, 101824. https://doi.org/10.1016/j.pneurobio.2020.101824
  • Kytö, M., Ens, B., Piumsomboon, T., Lee, G. A., & Billinghurst, M. (2018). Pinpointing: Precise head-and eye-based target selection for augmented reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1–14). ACM.
  • Lee, J., Leonard, C. J., Luck, S. J., & Geng, J. J. (2018). Dynamics of feature-based attentional selection during color–shape conjunction search. Journal of Cognitive Neuroscience, 30(12), 1773–1787. https://doi.org/10.1162/jocn_a_01318
  • Li, C., Zheng, S., & Pan, X. (2021). Using eye gaze for navigation: A user study inspired by lucid dreams. In 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) (pp. 665–666). IEEE. https://doi.org/10.1109/VRW52623.2021.00215
  • Li, Y., Bin, G., Gao, X., Hong, B., & Gao, S. (2011). Analysis of phase coding SSVEP based on canonical correlation analysis (CCA). In 2011 5th International IEEE/EMBS Conference on Neural Engineering (pp. 368–371). IEEE.
  • Liao, L.-D., Chen, C.-Y., Wang, I.-J., Chen, S.-F., Li, S.-Y., Chen, B.-W., Chang, J.-Y., & Lin, C.-T. (2012). Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. Journal of Neuroengineering and Rehabilitation, 9(1), 5–12. https://doi.org/10.1186/1743-0003-9-5
  • Lim, H. K., Ji, K., Woo, Y. S., Han, D.-U., Lee, D.-H., Nam, S. G., & Jang, K.-M. (2021). Test-retest reliability of the virtual reality sickness evaluation using electroencephalography (EEG). Neuroscience Letters, 743, 135589. https://doi.org/10.1016/j.neulet.2020.135589
  • Linn, A. (2017). Gaze teleportation in virtual reality.
  • Loup, G., & Loup-Escande, E. (2019). Effects of travel modes on performances and user comfort: A comparison between ArmSwinger and teleporting. International Journal of Human–Computer Interaction, 35(14), 1270–1278. https://doi.org/10.1080/10447318.2018.1519164
  • Lu, X., Yu, D., Liang, H.-N., Xu, W., Chen, Y., & Li, X. (2020). Exploration of hands-free text entry techniques for virtual reality. In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 344–349). IEEE. https://doi.org/10.1109/ISMAR50242.2020.00061
  • Marius’t Hart, B., & Einhäuser, W. (2012). Mind the step: Complementary effects of an implicit task on eye and head movements in real-life gaze allocation. Experimental Brain Research, 223(2), 233–249.
  • Marín-Morales, J., Higuera-Trujillo, J. L., Greco, A., Guixeres, J., Llinares, C., Scilingo, E. P., Alcañiz, M., & Valenza, G. (2018). Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors. Scientific Reports, 8(1), 1–15. https://doi.org/10.1038/s41598-018-32063-4
  • Marín-Morales, J., Llinares, C., Guixeres, J., & Alcañiz, M. (2020). Emotion recognition in immersive virtual reality: From statistics to affective computing. Sensors, 20(18), 5163. https://doi.org/10.3390/s20185163
  • Meta. (2022, May). Project cambria preview - mixed reality with presence platform. https://www.youtube.com/watch?v=tgJ7m0Phd64
  • Mirza, I. A., Tripathy, A., Chopra, S., Michelle, D., Rajagopalan, K., & D’Souza, A. (2015). Mind-controlled wheelchair using an EEG headset and arduino microcontroller. In 2015 International Conference on Technologies for Sustainable Development (ICTSD) (pp. 1–5). IEEE. https://doi.org/10.1109/ICTSD.2015.7095887
  • Pan, J., Gao, X., Duan, F., Yan, Z., & Gao, S. (2011). Enhancing the classification accuracy of steady-state visual evoked potential-based brain–computer interfaces using phase constrained canonical correlation analysis. Journal of Neural Engineering, 8(3), 036027.
  • Sauro, J. (2011). A practical guide to the system usability scale: Background, benchmarks & best practices. Measuring Usability LLC.
  • Schäfer, A., Reis, G., & Stricker, D. (2021). Controlling teleportation-based locomotion in virtual reality with hand gestures: A comparative evaluation of two-handed and one-handed techniques. Electronics, 10(6), 715. https://doi.org/10.3390/electronics10060715
  • Shim, J.-Y., & Min, J.-S. (2021). Design of reality object and virtual object control system using eeg. Journal of Korea Game Society, 21(1), 91–98. https://doi.org/10.7583/JKGS.2021.21.1.91
  • Si-Mohammed, H., Lopes-Dias, C., Duarte, M., Argelaguet, F., Jeunet, C., & Casiez, G. (2020). Detecting system errors in virtual reality using EEG through error-related potentials. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 653–661). IEEE. https://doi.org/10.1109/VR46266.2020.00088
  • Si-Mohammed, H., Petit, J., Jeunet, C., Argelaguet, F., Spindler, F., Evain, A., Roussel, N., Casiez, G., & Lecuyer, A. (2018). Towards BCI-based interfaces for augmented reality: Feasibility, design and evaluation. IEEE Transactions on Visualization and Computer Graphics, 26(3), 1608–1621. https://doi.org/10.1109/TVCG.2018.2873737
  • Singh, A. K., Chen, H.-T., Cheng, Y.-F., King, J.-T., Ko, L.-W., Gramann, K., & Lin, C.-T. (2018). Visual appearance modulates prediction error in virtual reality. IEEE Access, 6, 24617–24624. https://doi.org/10.1109/ACCESS.2018.2832089
  • Stein, N., Bremer, G., & Lappe, M. (2022). Eye tracking-based lstm for locomotion prediction in VR. In 2022 IEEE Virtual Reality (VR) (pp. 493–503). IEEE.
  • Stellmach, S., & Dachselt, R. (2012). Designing gaze-based user interfaces for steering in virtual environments. In Proceedings of the Symposium on Eye Tracking Research and Applications (pp. 131–138). ACM. https://doi.org/10.1145/2168556.2168577
  • Tariq, M., Trivailo, P. M., & Simic, M. (2018). EEG-based BCI control schemes for lower-limb assistive-robots. Frontiers in Human Neuroscience, 12, 312. https://doi.org/10.3389/fnhum.2018.00312
  • Templeman, J. N., Denbrook, P. S., & Sibert, L. E. (1999). Virtual locomotion: Walking in place through virtual environments. Presence: Teleoperators and Virtual Environments, 8(6), 598–617. https://doi.org/10.1162/105474699566512
  • Tregillus, S., Al Zayer, M., & Folmer, E. (2017). Handsfree omnidirectional VR navigation using head tilt. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp. 4063–4068). ACM.
  • Tremmel, C., Herff, C., Sato, T., Rechowicz, K., Yamani, Y., & Krusienski, D. J. (2019). Estimating cognitive workload in an interactive virtual reality environment using EEG. Frontiers in Human Neuroscience, 13, 401. Frontiers. https://doi.org/10.3389/fnhum.2019.00401
  • von Willich, J., Schmitz, M., Müller, F., Schmitt, D., & Mühlhäuser, M. (2020). Podoportation: Foot-based locomotion in virtual reality. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–14). ACM.
  • Vuillerme, N., Nougier, V., & Camicioli, R. (2002). Veering in human locomotion: Modulatory effect of attention. Neuroscience Letters, 331(3), 175–178. https://doi.org/10.1016/s0304-3940(02)00876-5
  • Ware, C., & Mikaelian, H. H. (1986). An evaluation of an eye tracker as a device for computer input2. In Proceedings of the SIGCHI/GI Conference on Human Factors in Computing Systems and Graphics Interface (pp. 183–188). ACM. https://doi.org/10.1145/30851.275627
  • Wen, T., & Zhang, Z. (2018). Deep convolution neural network and autoencoders-based unsupervised feature learning of EEG signals. IEEE Access, 6, 25399–25410. https://doi.org/10.1109/ACCESS.2018.2833746
  • Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225–240. https://doi.org/10.1162/105474698565686
  • Zank, M., & Kunz, A. (2016). Eye tracking for locomotion prediction in redirected walking. In 2016 IEEE Symposium on 3D User Interfaces (3DUI) (pp. 49–58). IEEE. https://doi.org/10.1109/3DUI.2016.7460030
  • Zhang, F., Chu, S., Pan, R., Ji, N., Xi, L. (2017). Double hand-gesture interaction for walk-through in VR environment. In 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS) (pp. 539–544) IEEE. https://doi.org/10.1109/ICIS.2017.7960051
  • Zhu, D., Bieger, J., Garcia Molina, G., & Aarts, R. M. (2010). A survey of stimulation methods used in SSVEP-based BCIS. Computational Intelligence and Neuroscience, 2010, 1–12. https://doi.org/10.1155/2010/702357

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.