1,779
Views
5
CrossRef citations to date
0
Altmetric
Survey Article

A Systematic Review of Human–Computer Interaction (HCI) Research in Medical and Other Engineering Fields

, , , &
Pages 515-536 | Received 16 Mar 2022, Accepted 18 Aug 2022, Published online: 14 Sep 2022

References

  • Al-Hiyari, N. N., & Jusoh, S. S. (2021). Healthcare Training Application: 3D First Aid Virtual Reality [Paper presentation]. International Conference on Data Science, E-Learning and Information Systems 2021. https://doi.org/10.1145/3460620.3460741
  • Andersen, S. A. W., Frendø, M., & Sørensen, M. S. (2020). Effects on cognitive load of tutoring in virtual reality simulation training. MedEdPublish, 9(51), 51. https://doi.org/10.15694/mep.2020.000051.1
  • Ausburn, L. J., & Ausburn, F. B. (2008). New desktop virtual reality technology in technical education. i-Manager's Journal of Educational Technology, 4(4), 48–61. https://doi.org/10.26634/jet.4.4.582
  • Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355–385. https://doi.org/10.1162/pres.1997.6.4.355
  • Barber, S. R., Jain, S., Son, Y.-J., & Chang, E. H. (2018). Virtual functional endoscopic sinus surgery simulation with 3D-printed models for mixed-reality nasal endoscopy. Otolaryngology-Head and Neck Surgery, 159(5), 933–937. https://doi.org/10.1177/0194599818797586
  • Bhargava, A., Lucaites, K. M., Hartman, L. S., Solini, H., Bertrand, J. W., Robb, A. C., Pagano, C. C., & Babu, S. V. (2020). Revisiting affordance perception in contemporary virtual reality. Virtual Reality, 24(4), 713–724. https://doi.org/10.1007/s10055-020-00432-y
  • Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12(5), 1–5.
  • Billinghurst, M., & Kato, H. (1999). Collaborative mixed reality. In Proceedings of the First International Symposium on Mixed Reality.
  • Biocca, F., & Delaney, B. (1995). Immersive virtual reality technology. Communication in the Age of Virtual Reality, 15(32), 10–5555.
  • Botha, B. S., de Wet, L., & Botma, Y. (2021). Undergraduate nursing student experiences in using immersive virtual reality to manage a patient with a foreign object in the right lung. Clinical Simulation in Nursing, 56, 76–83. https://doi.org/10.1016/j.ecns.2020.10.008
  • Britt, R. C., Scerbo, M. W., Montano, M., Kennedy, R. A., Prytz, E., & Stefanidis, D. (2015). Intracorporeal suturing: Transfer from fundamentals of laparoscopic surgery to cadavers results in substantial increase in mental workload. Surgery, 158(5), 1428–1433. https://doi.org/10.1016/j.surg.2015.03.032
  • Buttussi, F., & Chittaro, L. (2018). Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1063–1076. https://doi.org/10.1109/TVCG.2017.2653117
  • Card, S. K. (2018). The psychology of human–computer interaction. CRC Press.
  • Cecil, J. (2009, June 8–12). Modeling the process of creating virtual prototypes. Proceedings of 2009 Computer Aided Design Conference, Reno, Nevada.
  • Cecil, J., Albuhamood, S., Ramanathan, P., & Gupta, A. (2019). An Internet-of-Things (IoT) based cyber manufacturing framework for the assembly of microdevices. International Journal of Computer Integrated Manufacturing, 32(4–5), 430–440. https://doi.org/10.1080/0951192X.2019.1599435
  • Cecil, J., Gupta, A., Pirela-Cruz, M., & Ramanathan, P. (2017). A cyber training framework for orthopedic surgery. Cogent Medicine, 4(1), 1419792. https://doi.org/10.1080/2331205X.2017.1419792
  • Cecil, J. (2021). Design of a human centered computing (HCC) based virtual reality simulator to train first responders involved in the COVID-19 pandemic [Paper presentation]. 2021 IEEE International Systems Conference (SysCon), IEEE. https://doi.org/10.1109/SysCon48628.2021.9447090
  • Cecil, J., & Pirela-Cruz, M. (2013). An information model for designing virtual environments for orthopedic surgery [Paper presentation]. OTM Confederated International Conferences on the Move to Meaningful Internet Systems, Springer.
  • Cecil, J., & Pirela-Cruz, M. (2016). An information centric framework for creating virtual environments to support micro surgery. International Journal of Virtual Reality, 15(2), 3–17. https://doi.org/10.20870/IJVR.2016.15.2.2870
  • Chheang, V., Fischer, V., Buggenhagen, H., Huber, T., Huettl, F., Kneist, W., Preim, B., Saalfeld, P., & Hansen, C. (2020). Toward interprofessional team training for surgeons and anesthesiologists using virtual reality. International Journal of Computer Assisted Radiology and Surgery, 15(12), 2109–2118. https://doi.org/10.1007/s11548-020-02276-y
  • Dobricki, M., Kim, K. G., Coppi, A. E., Dillenbourg, P., & Cattaneo, A. (2021). Perceived educational usefulness of a virtual-reality work situation depends on the spatial human-environment relation. Research in Learning Technology, 29, 1–11. https://doi.org/10.25304/rlt.v29.2453
  • Ehn, P. (1996). The envisionment workshop-from visions to practice. In Proceedings of the Participatory Design Conference.
  • El-Hariri, H. (2018). Augmented reality visualisation for orthopaedic surgical guidance with pre-and intra-operative multimodal image data fusion. Healthcare Technology Letters, 5(5), 189–193. https://doi.org/10.1049/htl.2018.5061
  • Elliott, A. (2015). Virtual reality in software engineering: Affordances, applications, and challenges [Paper presentation]. 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, IEEE.
  • Gagnon, H. C. (2021). The effect of feedback on estimates of reaching ability in virtual reality [Paper presentation]. 2021 IEEE Virtual Reality and 3D User Interfaces (VR), IEEE. https://doi.org/10.1109/VR50410.2021.00107
  • Gagnon, H. C., Rosales, C. S., Mileris, R., Stefanucci, J. K., Creem-Regehr, S. H., & Bodenheimer, R. E. (2021). Estimating distances in action space in augmented reality. ACM Transactions on Applied Perception, 18(2), 1–16. https://doi.org/10.1145/3449067
  • Gardner, A. K., Kosemund, M., & Martinez, J. (2017). Examining the feasibility and predictive validity of the SAGAT tool to assess situation awareness among medical trainees. Simulation in Healthcare, 12(1), 17–21. https://doi.org/10.1097/SIH.0000000000000181
  • Gaver, W. W. (1991). Technology affordances [Paper presentation]. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
  • Geraets, C. N. W., Klein Tuente, S., Lestestuiver, B. P., van Beilen, M., Nijman, S. A., Marsman, J. B. C., & Veling, W. (2021). Virtual reality facial emotion recognition in social environments: An eye-tracking study. Internet Interventions, 25(September 2021), 100432. https://doi.org/10.1016/j.invent.2021.100432
  • Gibson, J. J., & Carmichael, L. (1966). The senses considered as perceptual systems (Vol. 2, No. 1, pp. 44–73). Houghton Mifflin.
  • Gnesdilow, D., & Puntambekar, S. (2022). Comparing middle school students’ science explanations during physical and virtual laboratories. Journal of Science Education and Technology, 31(2), 191–202. https://doi.org/10.1007/s10956-021-09941-0
  • Gong, L., Söderlund, H., Bogojevic, L., Chen, X., Berce, A., Fast-Berglund, Å., & Johansson, B. (2020). Interaction design for multi-user virtual reality systems: An automotive case study. Procedia CIRP, 93, 1259–1264. https://doi.org/10.1016/j.procir.2020.04.036
  • Gonzalez, D. C., & Garnique, L. V. (2018). Development of a simulator with HTC Vive using gamification to improve the learning experience in medical students [Paper presentation]. 2018 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), IEEE.
  • Gordon, C. L., Shea, T. M., Noelle, D. C., & Balasubramaniam, R. (2019). Affordance compatibility effect for word learning in virtual reality. Cognitive Science, 43(6), e12742. https://doi.org/10.1111/cogs.12742
  • Gumilar, I., Sareen, E., Bell, R., Stone, A., Hayati, A., Mao, J., Barde, A., Gupta, A., Dey, A., Lee, G., & Billinghurst, M. (2021). A comparative study on inter-brain synchrony in real and virtual environments using hyperscanning. Computers & Graphics, 94(February 2021), 62–75. https://doi.org/10.1016/j.cag.2020.10.003
  • Gupta, A. (2022). Role of dynamic affordance and cognitive load in the design of extended reality based simulation environments for surgical contexts [Paper presentation]. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), IEEE. https://doi.org/10.1109/VRW55335.2022.00177
  • Harrington, C. M., Kavanagh, D. O., Quinlan, J. F., Ryan, D., Dicker, P., O'Keeffe, D., Traynor, O., & Tierney, S. (2018). Development and evaluation of a trauma decision-making simulator in Oculus virtual reality. The American Journal of Surgery, 215(1), 42–47. https://doi.org/10.1016/j.amjsurg.2017.02.011
  • Harrison, S. (1996). The participatory design of work space. PDC.
  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (task load index): Results of empirical and theoretical research. Advances in Psychology, 52(1988), 139–183. https://doi.org/10.1016/S0166-4115(08)62386-9
  • Hattori, A., Tonami, K., Tsuruta, J., Hideshima, M., Kimura, Y., Nitta, H., & Araki, K. (2022). Effect of the haptic 3D virtual reality dental training simulator on assessment of tooth preparation. Journal of Dental Sciences, 17(1), 514–520. https://doi.org/10.1016/j.jds.2021.06.022
  • Hickson, S. (2019). Eyemotion: Classifying facial expressions in VR using eye-tracking cameras [Paper presentation]. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE. https://doi.org/10.1109/WACV.2019.00178
  • Hooks, K., Ferguson, W., Morillo, P., & Cruz-Neira, C. (2020). Evaluating the user experience of omnidirectional VR walking simulators. Entertainment Computing, 34(May 2020), 100352. https://doi.org/10.1016/j.entcom.2020.100352
  • Hooper, J., Tsiridis, E., Feng, J. E., Schwarzkopf, R., Waren, D., Long, W. J., Poultsides, L., & Macaulay, W. (2019). Virtual reality simulation facilitates resident training in total hip arthroplasty: A randomized controlled trial. The Journal of Arthroplasty, 34(10), 2278–2283. https://doi.org/10.1016/j.arth.2019.04.002
  • Huber, T., Paschold, M., Hansen, C., Wunderling, T., Lang, H., & Kneist, W. (2017). New dimensions in surgical training: Immersive virtual reality laparoscopic simulation exhilarates surgical staff. Surgical Endoscopy, 31(11), 4472–4477. https://doi.org/10.1007/s00464-017-5500-6
  • Hughes, C. E., Stapleton, C. B., Hughes, D. E., & Smith, E. M. (2005). Mixed reality in education, entertainment, and training. IEEE Computer Graphics and Applications, 25(6), 24–30. https://doi.org/10.1109/mcg.2005.139
  • Ifenthaler, D. (2015). The SAGE encyclopedia of educational technology. SAGE Publications, Inc.
  • Jefferson, F., Parkhomenko, E., O’Leary, M., Safiullah, S., Sung, J., Patel, R., Ichii, H., Dafoe, D., & Landman, J. (2019). MP35-08 immersive virtual reality (IVR) renal models as an educational and preoperative planning tool for laparoscopic donor nephrectomy: Initial experience. Journal of Urology, 201(Supplement 4), e508. https://doi.org/10.1097/01.JU.0000555998.71874.c4
  • Jensen, P. L. (1997). The Scandinavian approach in participatory ergonomics [Paper presentation]. 13th Triennial Congress of the International Ergonomics Association, Finnish Institute of Occupational Health.
  • Jurda, M., Urbanová, P., & Chmelík, J. (2019). Digital restoration of fragmentary human skeletal remains: Testing the feasibility of virtual reality. Journal of Forensic and Legal Medicine, 66(August 2019), 50–57. https://doi.org/10.1016/j.jflm.2019.06.005
  • Jyoti, V., & Lahiri, U. (2020). Human–computer interaction based joint attention cues: Implications on functional and physiological measures for children with autism spectrum disorder. Computers in Human Behavior, 104(March 2020), 106163. https://doi.org/10.1016/j.chb.2019.106163
  • Kakoschke, N., Page, R., de Courten, B., Verdejo-Garcia, A., & McCormack, J. (2021). Brain training with the body in mind: Towards gamified approach-avoidance training using virtual reality. International Journal of Human–Computer Studies, 151(July 2021), 102626. https://doi.org/10.1016/j.ijhcs.2021.102626
  • Kaluschke, M. (2018). A virtual hip replacement surgery simulator with realistic haptic feedback [Paper presentation]. 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), IEEE. https://doi.org/10.1109/VR.2018.8446462
  • Katona, J. (2017). Examine the effect of different web-based media on human brain waves [Paper presentation]. 2017 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom). https://doi.org/10.1109/CogInfoCom.2017.8268280
  • Katona, J. (2019). Electroencephalogram-based brain-computer interface for internet of robotic things. In Cognitive infocommunications, theory and applications (pp. 253–275). Springer.
  • Ke, F., Pachman, M., & Dai, Z. (2020). Investigating educational affordances of virtual reality for simulation-based teaching training with graduate teaching assistants. Journal of Computing in Higher Education, 32(3), 607–621. https://doi.org/10.1007/s12528-020-09249-9
  • Keshavarzi, M. (2019). Affordance analysis of virtual and augmented reality mediated communication. arXiv Preprint arXiv:1904.04723.
  • Kitchenham, B. (2004). Procedures for performing systematic reviews (Vol. 33, pp. 1–26). Keele University.
  • Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering–A systematic literature review. Information and Software Technology, 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009
  • Kober, S. E., & Neuper, C. (2013). Personality and presence in virtual reality: Does their relationship depend on the used presence measure? International Journal of Human–Computer Interaction, 29(1), 13–25. https://doi.org/10.1080/10447318.2012.668131
  • Kohli, V., Tripathi, U., Chamola, V., Rout, B. K., & Kanhere, S. S. (2022). A review on virtual reality and augmented reality use-cases of brain computer interface based applications for smart cities. Microprocessors and Microsystems, 88, 104392.
  • Kopeć, W., Wichrowski, M., Kalinowski, K., Jaskulska, A., Skorupska, K., Cnotkowski, D., Tyszka, J., Popieluch, A., Voitenkova, A., Masłyk, R., Gago, P., Krzywicki, M., Kornacka, M., Biele, C., Kobyliński, P., Kowalski, J., Abramczuk, K., Zdrodowska, A., Pochwatko, G., Możaryn, J., & Marasek, K. (2019). VR with older adults: Participatory design of a virtual ATM training simulation. IFAC-PapersOnLine, 52(19), 277–281. https://doi.org/10.1016/j.ifacol.2019.12.110
  • Koutromanos, G. (2020). Exploring the educational affordances of augmented reality for pupils with moderate learning difficulties [Paper presentation]. 9th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-Exclusion. https://doi.org/10.1145/3439231.3439250
  • Kupiainen, E., Mäntylä, M. V., & Itkonen, J. (2015). Using metrics in Agile and Lean Software Development–A systematic literature review of industrial studies. Information and Software Technology, 62(June 2015), 143–163. https://doi.org/10.1016/j.infsof.2015.02.005
  • Li, H., & Chen, C.-H. (2021). Effects of affordance on the visual perception of smart washing machine user interface design [Paper presentation]. International Conference on Applied Human Factors and Ergonomics, Springer.
  • Li, K., & Wang, S. (2021). Development and application of VR course resources based on embedded system in open education. Microprocessors and Microsystems, 83(June 2021), 103989. https://doi.org/10.1016/j.micpro.2021.103989
  • Li, M. (2020). Analysing usability and presence of a virtual reality operating room (VOR) simulator during laparoscopic surgery training [Paper presentation]. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), IEEE. https://doi.org/10.1109/VR46266.2020.00078
  • Li, Y. J. (2021). Parkinson’s disease simulation in virtual reality for empathy training in medical education [Paper presentation]. 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), IEEE. https://doi.org/10.1109/VRW52623.2021.00016
  • Liagkou, V., & Stylios, C. (2019). Introducing VR technology for increasing the digitalization of SMEs. IFAC-PapersOnLine, 52(13), 451–456. https://doi.org/10.1016/j.ifacol.2019.11.101
  • Liagkou, V., Stylios, C., & Salmas, D. (2019). VR training model for exploiting security in LPWAN. Procedia CIRP, 79(2019), 724–729. https://doi.org/10.1016/j.procir.2019.02.022
  • Lox, C. L., Jackson, S., Tuholski, S. W., Wasley, D., & Treasure, D. C. (2000). Revisiting the measurement of exercise-induced feeling states: The Physical Activity Affect Scale (PAAS). Measurement in Physical Education and Exercise Science, 4(2), 79–95. https://doi.org/10.1207/S15327841Mpee0402_4
  • Lu, Y., & Cecil, J. (2015). An Internet of Things (IoT)-based collaborative framework for advanced manufacturing. The International Journal of Advanced Manufacturing Technology, 84(5–8), 1141–1152. https://doi.org/10.1007/s00170-015-7772-0
  • Macchini, M. (2021). The impact of virtual reality and viewpoints in body motion based drone teleoperation [Paper presentation]. 2021 IEEE Virtual Reality and 3D User Interfaces (VR), IEEE. https://doi.org/10.1109/VR50410.2021.00075
  • Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60(April 2019), 225–236. https://doi.org/10.1016/j.learninstruc.2017.12.007
  • Mao, R. Q., Lan, L., Kay, J., Lohre, R., Ayeni, O. R., Goel, D. P., & Sa, D. (2021). Immersive virtual reality for surgical training: A systematic review. Journal of Surgical Research, 268(December 2021), 40–58. https://doi.org/10.1016/j.jss.2021.06.045
  • Mastro, A. D., Monaco, F., & Benyoucef, Y. (2021). A multi-user virtual reality experience for space missions. Journal of Space Safety Engineering, 8(2), 134–137. https://doi.org/10.1016/j.jsse.2021.03.002
  • Muller, M. J., & Kuhn, S. (1993). Participatory design. Communications of the ACM, 36(6), 24–28. https://doi.org/10.1145/153571.255960
  • Nolen, S. B., & Koretsky, M. D. (2018). Affordances of virtual and physical laboratory projects for instructional design: Impacts on student engagement. IEEE Transactions on Education, 61(3), 226–233. https://doi.org/10.1109/TE.2018.2791445
  • Norman, D. A. (1988). The psychology of everyday things. Basic Books.
  • Otaduy, M. A., Garre, C., & Lin, M. C. (2013). Representations and algorithms for force-feedback display. Proceedings of the IEEE, 101(9), 2068–2080. https://doi.org/10.1109/JPROC.2013.2246131
  • Ott, M., & Freina, L. (2015). A literature review on immersive virtual reality in education: State of the art and perspectives.
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88(105906), 105906. https://doi.org/10.1016/j.ijsu.2021.105906
  • Park, J. W., Choi, J., Park, Y., & Sun, K. (2011). Haptic virtual fixture for robotic cardiac catheter navigation. Artificial Organs, 35(11), 1127–1131. https://doi.org/10.1111/j.1525-1594.2011.01373.x
  • Persky, S., Kaphingst, K. A., McCall, C., Lachance, C., Beall, A. C., & Blascovich, J. (2009). Presence relates to distinct outcomes in two virtual environments employing different learning modalities. Cyberpsychology & Behavior, 12(3), 263–268. https://doi.org/10.1089/cpb.2008.0262
  • Pointon, G. (2018). Affordances as a measure of perceptual fidelity in augmented reality.
  • Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147(April 2020), 103778. https://doi.org/10.1016/j.compedu.2019.103778
  • Ratcliffe, J., & Tokarchuk, L. (2020). Presence, embodied interaction and motivation: Distinct learning phenomena in an immersive virtual environment [Paper presentation]. Proceedings of the 28th ACM International Conference on Multimedia (pp. 3661–3668). Association for Computing Machinery.
  • Readman, M. R., Cooper, D., & Linkenauger, S. A. (2021). It’s in your hands: How variable perception affects grasping estimates in virtual reality. Psychonomic Bulletin & Review, 28(4), 1202–1209. https://doi.org/10.3758/s13423-021-01916-x
  • Reinschluessel, A. V. (2017). Virtual reality for user-centered design and evaluation of touch-free interaction techniques for navigating medical images in the operating room [Paper presentation]. Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. https://doi.org/10.1145/3027063.3053173
  • Ricca, A., Chellali, A., & Otmane, S. (2021). Comparing touch-based and head-tracking navigation techniques in a virtual reality biopsy simulator. Virtual Reality, 25(1), 191–208. https://doi.org/10.1007/s10055-020-00445-7
  • Rubo, M., Messerli, N., & Munsch, S. (2021). The human source memory system struggles to distinguish virtual reality and reality. Computers in Human Behavior Reports, 4(August–December 2021), 100111. https://doi.org/10.1016/j.chbr.2021.100111
  • Sacau, A. (2005). The impact of personality factors on the experience of spatial presence.
  • Salamon, N., Grimm, J. M., Horack, J. M., & Newton, E. K. (2018). Application of virtual reality for crew mental health in extended-duration space missions. Acta Astronautica, 146(May 2018), 117–122. https://doi.org/10.1016/j.actaastro.2018.02.034
  • Salminen, J. (2019). Confusion prediction from eye-tracking data: Experiments with machine learning [Paper presentation]. Proceedings of the 9th International Conference on Information Systems and Technologies.
  • Schirm, J. (2019). Towards an objective measure of presence: Examining startle reflexes in a commercial virtual reality game [Paper presentation]. Extended Abstracts of the Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts.
  • Shao, Y., Lessio, N., & Morris, A. (2019). IoT avatars: Mixed reality hybrid objects for core ambient intelligent environments. Procedia Computer Science, 155(2019), 433–440. https://doi.org/10.1016/j.procs.2019.08.060
  • Shi, H., Ames, J., & Randles, A. (2020). Harvis: An interactive virtual reality tool for hemodynamic modification and simulation. Journal of Computational Science, 43(May 2020), 101091. https://doi.org/10.1016/j.jocs.2020.101091
  • Shi, J., Hou, Y., Lin, Y., Chen, H., & Yuan, W. (2018). Role of visuohaptic surgical training simulator in resident education of orthopedic surgery. World Neurosurgery, 111, e98–e104. https://doi.org/10.1016/j.wneu.2017.12.015
  • Slater, M., & Wilbur, S. (1997). A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators and Virtual Environments, 6(6), 603–616. https://doi.org/10.1162/pres.1997.6.6.603
  • Sra, M. (2019). Adding proprioceptive feedback to virtual reality experiences using galvanic vestibular stimulation [Paper presentation]. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3290605.3300905
  • Steuer, J. (1992). Defining virtual reality: Dimensions determining telepresence. Journal of Communication, 42(4), 73–93. https://doi.org/10.1111/j.1460-2466.1992.tb00812.x
  • Sun, C., Hu, W., & Xu, D. (2019). Navigation modes, operation methods, observation scales and background options in UI design for high learning performance in VR-based architectural applications. Journal of Computational Design and Engineering, 6(2), 189–196. https://doi.org/10.1016/j.jcde.2018.05.006
  • Sutherland, I. (1965). The ultimate display. In Proceedings of the IFIPS Congress, New York (Vol. 65, pp. 506–508). IFIP.
  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1207/s15516709cog1202_4
  • Tellegen, A., & Atkinson, G. (1974). Openness to absorbing and self-altering experiences (“absorption”), a trait related to hypnotic susceptibility. Journal of Abnormal Psychology, 83(3), 268–277. https://doi.org/10.1037/h0036681
  • Tennant, M., Anderson, N., Youssef, G. J., McMillan, L., Thorson, R., Wheeler, G., & McCarthy, M. C. (2021). Effects of immersive virtual reality exposure in preparing pediatric oncology patients for radiation therapy. Technical Innovations & Patient Support in Radiation Oncology, 19, 18–25. https://doi.org/10.1016/j.tipsro.2021.06.001
  • Thompson, C. J., & Hite, R. (2021). Exploring the affordances of computer-based assessment in measuring three-dimensional science learning. International Journal of Learning Technology, 16(1), 3–36. https://doi.org/10.1504/IJLT.2021.115468
  • Turini, G. (2018). A Microsoft HoloLens mixed reality surgical simulator for patient-specific hip arthroplasty training [Paper presentation]. International Conference on Augmented Reality, Virtual Reality and Computer Graphics, Springer.
  • Van Leeuwen, J. P. (2018). Effectiveness of virtual reality in participatory urban planning: A case study [Paper presentation]. Proceedings of the 4th Media Architecture Biennale Conference. https://doi.org/10.1145/3284389.3284491
  • Vasudevan, M. K., Isaac, J. H. R., Sadanand, V., & Muniyandi, M. (2020). Novel virtual reality based training system for fine motor skills: Towards developing a robotic surgery training system. The International Journal of Medical Robotics + Computer Assisted Surgery, 16(6), 1–14. https://doi.org/10.1002/rcs.2173
  • Vogt, A., Babel, F., Hock, P., Baumann, M., & Seufert, T. (2021). Prompting in-depth learning in immersive virtual reality: Impact of an elaboration prompt on developing a mental model. Computers & Education, 171(October 2021), 104235. https://doi.org/10.1016/j.compedu.2021.104235
  • Walsh, K. R., & Pawlowski, S. D. (2002). Virtual reality: A technology in need of IS research. Communications of the Association for Information Systems, 8(20). https://doi.org/10.17705/1CAIS.00820
  • Wang, X., & Wang, X. (2018). Virtual reality training system for surgical anatomy [Paper presentation]. Proceedings of the 2018 International Conference on Artificial Intelligence and Virtual Reality. https://doi.org/10.1145/3293663.3293670
  • Watterson, J. D., Beiko, D. T., Kuan, J. K., & Denstedt, J. D. (2002). A randomized prospective blinded study validating acquisition of ureteroscopy skills using a computer based virtual reality endourological simulator. The Journal of Urology, 168(5), 1928–1932. https://doi.org/10.1016/S0022-5347(05)64265-6
  • Wijewickrema, S. (2017). Design and evaluation of a virtual reality simulation module for training advanced temporal bone surgery [Paper presentation]. 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), IEEE. https://doi.org/10.1109/CBMS.2017.10
  • Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225–240. https://doi.org/10.1162/105474698565686
  • Wu, H. (2019). Danger from the deep: A gap affordance study in augmented reality [Paper presentation]. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), IEEE. https://doi.org/10.1109/VR.2019.8797965
  • Wu, X., Liu, R., Yu, J., Xu, S., Yang, C., Shao, Z., Yang, S., & Ye, Z. (2018). Mixed reality technology–assisted orthopedics surgery navigation. Surgical Innovation, 25(3), 304–305. https://doi.org/10.1177/1553350618771413
  • Yamazaki, A., Ito, T., Sugimoto, M., Yoshida, S., Honda, K., Kawashima, Y., Fujikawa, T., Fujii, Y., & Tsutsumi, T. (2021). Patient-specific virtual and mixed reality for immersive, experiential anatomy education and for surgical planning in temporal bone surgery. Auris Nasus Larynx, 48(6), 1081–1091. https://doi.org/10.1016/j.anl.2021.03.009
  • Yu, M., Yang, M., Ku, B., & Mann, J. S. (2021). Effects of virtual reality simulation program regarding high-risk neonatal infection control on nursing students. Asian Nursing Research, 15(3), 189–196. https://doi.org/10.1016/j.anr.2021.03.002
  • Yung, R., & Khoo-Lattimore, C. (2019). New realities: A systematic literature review on virtual reality and augmented reality in tourism research. Current Issues in Tourism, 22(17), 2056–2081. https://doi.org/10.1080/13683500.2017.1417359
  • Zhang, L., Wade, J., Bian, D., Fan, J., Swanson, A., Weitlauf, A., Warren, Z., & Sarkar, N. (2017). Cognitive load measurement in a virtual reality-based driving system for autism intervention. IEEE Transactions on Affective Computing, 8(2), 176–189. https://doi.org/10.1109/TAFFC.2016.2582490
  • Zhao, J.-Q., Zhang, X.-X., Wang, C.-H., & Yang, J. (2021). Effect of cognitive training based on virtual reality on the children with autism spectrum disorder. Current Research in Behavioral Sciences, 2(November 2021), 100013. https://doi.org/10.1016/j.crbeha.2020.100013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.