211
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Analysing IoT Data for Anxiety and Stress Monitoring: A Systematic Mapping Study and Taxonomy

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1174-1194 | Received 04 May 2022, Accepted 29 Sep 2022, Published online: 27 Oct 2022

References

  • Abbas, T., Khan, V., & Markopoulos, P. (2020). Investigating the Crowd’s creativity for creating on-Demand IoT scenarios. International Journal of Human–Computer Interaction, 36(11), 1022–1049. https://doi.org/10.1080/10447318.2019.1709331
  • Akmandor, A., & Jha, N. (2017). Keep the stress away with SoDA: Stress detection and alleviation system. IEEE Transactions on Multi-Scale Computing Systems, 3(4), 269–282. https://doi.org/10.1109/TMSCS.2017.2703613
  • Al Osman, H., Eid, M., & El Saddik, A. (2014). U-biofeedback: A multimedia-based reference model for ubiquitous biofeedback systems. Multimedia Tools and Applications, 72(3), 3143–3168. https://doi.org/10.1007/s11042-013-1590-x
  • Alazzam, M. B., Alassery, F., & Almulihi, A. (2021). A Novel smart healthcare monitoring system using machine learning and the internet of things. Wireless Communications and Mobile Computing, 2021, 1–7. https://doi.org/10.1155/2021/5078799
  • Aldahiri, A., Alrashed, B., & Hussain, W. (2021). Trends in using IoT with machine learning in health prediction system. Forecasting, 3(1), 181–206. https://www.mdpi.com/2571-9394/3/1/12 https://doi.org/10.3390/forecast3010012
  • Alharthi, R., Alharthi, R., Guthier, B., & El Saddik, A. (2019). CASP: Context-aware stress prediction system. Multimedia Tools and Applications, 78(7), 9011–9031. https://doi.org/10.1007/s11042-017-5246-0
  • Allen, A. P., Kennedy, P. J., Dockray, S., Cryan, J. F., Dinan, T. G., & Clarke, G. (2017). The trier social stress test: Principles and practice. Neurobiology of Stress, 6, 113–126. https://doi.org/10.1016/j.ynstr.2016.11.001
  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5.
  • American Psychological Association. (2018). Anxiety disorders. (American Psychological Association). https://www.apa.org/topics/stress/body
  • American Psychological Association. (2020). What’s the difference between stress and anxiety? (American Psychological Association), https://www.apa.org/topics/stress/anxiety-difference
  • American Psychological Association. (2021). Stress relief is within reach. (American Psychological Association). https://www.apa.org/topics/stress
  • Anusha, A., Sukumaran, P., Sarveswaran, V., Surees Kumar, S., Shyam, A., Akl, T., Preejith, S., & Sivaprakasam, M. (2020). Electrodermal activity based pre-surgery stress detection using a wrist wearable. IEEE Journal of Biomedical and Health Informatics, 24(1), 92–100. https://doi.org/10.1002/per.2262
  • Aranda, J. A. S., Bavaresco, R. S., De Carvalho, J. V., Yamin, A. C., Tavares, M. C., & Barbosa, J. L. V. (2021). A computational model for adaptive recording of vital signs through context histories. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-021-03126-8
  • Aristizabal, S., Byun, K., Wood, N., Mullan, A. F., Porter, P. M., Campanella, C., Jamrozik, A., Nenadic, I. Z., & Bauer, B. A. (2021). The feasibility of wearable and self-report stress detection measures in a semi-controlled lab environment. IEEE Access. 9, 102053–102068. https://doi.org/10.1109/ACCESS.2021.3097038
  • Australian Psychological Society. (2022). Anxiety disorders. (Australian Psychological Society). https://psychology.org.au/for-the-public/psychology-topics/anxiety
  • Banholzer, N., Feuerriegel, S., Fleisch, E., Bauer, G., & Kowatsch, T. (2021). Computer mouse movements as an indicator of work stress: Longitudinal observational field study. Journal of Medical Internet Research, 23(4), e27121. https://doi.org/10.2196/27121
  • Barrell, A. (2020). Stress vs. anxiety: Differences, symptoms, and relief (MediLexicon International). https://www.medicalnewstoday.com/articles/stress-vs-anxiety
  • Bavaresco, R., Barbosa, J., Vianna, H., Büttenbender, P., & Dias, L. (2020). Design and evaluation of a context-aware model based on psychophysiology. Computer Methods and Programs in Biomedicine, 189, 105299. https://doi.org/10.1016/j.cmpb.2019.105299
  • Betti, S., Lova, R., Rovini, E., Acerbi, G., Santarelli, L., Cabiati, M., Ry, S., & Cavallo, F. (2018). Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Transactions on Bio-Medical Engineering, 65(8), 1748–1758. https://doi.org/10.1109/TBME.2017.2764507
  • Biofourmis, A. G. (2021). Blood Pulse Wave. https://support.biofourmis.com/hc/en-us/articles/213581765-Blood-Pulse-Wave
  • Boateng, G., & Kotz, D. (2016). StressAware: An app for real-time stress monitoring on the amulet wearable platform. 2016 IEEE MIT Undergraduate Research Technology Conference (URTC). pp. 1–4. https://doi.org/10.1109/URTC.2016.8284068
  • Bolliger, L., Lukan, J., Luštrek, M., De Bacquer, D., & Clays, E. (2020). Protocol of the stress at work (Straw) project: How to disentangle day-to-day occupational stress among academics based on Ema, physiological data, and smartphone sensor and usage data. International Journal of Environmental Research and Public Health, 17(23), 8815–8835. https://doi.org/10.3390/ijerph17238835
  • Can, Y. S., Arnrich, B., & Ersoy, C. (2019). Stress detection in daily life scenarios using smart phones and wearable sensors: A survey. Journal of Biomedical Informatics, 92, 103139. https://doi.org/10.1016/j.jbi.2019.103139
  • Can, Y., Chalabianloo, N., Ekiz, D., & Ersoy, C. (2019). Continuous stress detection using wearable sensors in real life: Algorithmic programming contest case study. Sensors, 19(8), 1849. https://doi.org/10.3390/s19081849
  • Caspi, A., Sugden, K., Moffitt, T., Taylor, A., Craig, I., Harrington, H., McClay, J., Mill, J., Martin, J., Braithwaite, A., & Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT Gene. Science, 301(5631), 386–389. https://doi.org/10.1126/science.1083968
  • Chatterjee, M., Stratou, G., Scherer, S., & Morency, L. (2014). Context-based signal descriptors of heart-rate variability for anxiety assessment. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 3631–3635, https://doi.org/10.1109/ICASSP.2014.6854278
  • Choi, Y., Jeon, Y., Wang, L., & Kim, K. (2017). A biological signal-based stress monitoring framework for children using wearable devices. Sensors, 17(9), 1936. https://doi.org/10.3390/s17091936
  • Čolaković, A., & Hadžialić, M. (2018). Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Computer Networks, 144, 17–39. https://doi.org/10.1016/j.comnet.2018.07.017
  • Cooper, D. (2016). What is a “mapping study”? Journal of the Medical Library Association, 104(1), 76–78. https://doi.org/10.3163/1536-5050.104.1.013
  • Cruz, L., Rubin, J., Abreu, R., Ahern, S., Eldardiry, H., & Bobrow, D. (2015). A wearable and mobile intervention delivery system for individuals with panic disorder. ACM International Conference Proceeding Series, 30 November. pp. 175–182. https://doi.org/10.1145/2836041.2836058
  • D’Avila, L. F., Farias, K., & Barbosa, J. L. V. (2020). Effects of contextual information on maintenance effort: A controlled experiment. Journal of Systems and Software, 159, 110443. https://doi.org/10.1016/j.jss.2019.110443
  • Da Rosa, J. H., Barbosa, J. L. V., & Ribeiro, G. D. (2016). ORACON: An adaptive model for context prediction. Expert Systems with Applications, 45, 56–70. https://doi.org/10.1016/j.eswa.2015.09.016
  • Dai, R., Lu, C., Yun, L., Lenze, E., Avidan, M., & Kannampallil, T. (2021). Comparing stress prediction models using smartwatch physiological signals and participant self-reports. Computer Methods and Programs in Biomedicine, 208, 106207. https://doi.org/10.1016/j.cmpb.2021.106207
  • De Donno, M., Tange, K., & Dragoni, N. (2019). Foundations and evolution of modern computing paradigms: Cloud, IoT, Edge, and Fog. IEEE Access. 7, 150936–150948. https://doi.org/10.1109/ACCESS.2019.2947652
  • Dey, A., Abowd, G., & Salber, D. (2001). A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Human–Computer Interaction, 16(2–4), 97–166. https://doi.org/10.1207/S15327051HCI16234_02
  • Dias, L. P. S., Barbosa, J. L. V., Feijó, L. P., & Vianna, H. D. (2020). Development and testing of iAware model for ubiquitous care of patients with symptoms of stress, anxiety and depression. Computer Methods and Programs in Biomedicine, 187, 105113. https://doi.org/10.1016/j.cmpb.2019.105113
  • D’monte, S., Tuscano, G., Raut, L., & Sherkhane, S. (2018). Rule generation and prediction of Anxiety Disorder using Logistic Model Trees. 2018 International Conference on Smart City and Emerging Technology (ICSCET). pp. 1–4. https://doi.org/10.1109/ICSCET.2018.8537258
  • Dorneles, S. O., Francisco, R., Barbosa, D. N. F., & Barbosa, J. L. V. (2022). Context awareness in recognition of affective states: A systematic mapping of the literature. International Journal of Human–Computer Interaction, 1–19. https://doi.org/10.1080/10447318.2022.2062549
  • Dos Santos Paula, L., Barbosa, J. L. V., & Dias, L. P. S. (2021). A model for assisting in the treatment of anxiety disorder. Universal Access in the Information Society, 21(2), 533–543. https://doi.org/10.1007/s10209-020-00786-9
  • Egilmez, B., Poyraz, E., Zhou, W., Memik, G., Dinda, P., & Alshurafa, N. (2017). UStress: Understanding college student subjective stress using wrist-based passive sensing. 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). pp. 673–678. https://doi.org/10.1109/PERCOMW.2017.7917644
  • Elvitigala, D., Scholl, P., Suriyaarachchi, H., DIssanayake, V., & Nanayakkara, S. (2021). StressShoe: A DIY Toolkit for just-in-time personalised stress interventions for office workers performing sedentary tasks. Proceedings of MobileHCI 2021 – ACM International Conference on Mobile Human-Computer Interaction: Mobile apart, MobileTogether. https://doi.org/10.1145/3447526.3472023
  • Elzeiny, S., & Qaraqe, M. (2020). Stress classification using photoplethysmogram-based spatial and frequency domain images. Sensors, 20(18), 5312. https://doi.org/10.3390/s20185312
  • Enoch, M. (2003). Pharmacogenomics of alcohol response and addiction. American Journal of Pharmacogenomics, 3(4), 217–232. https://doi.org/10.2165/00129785-200303040-00001
  • Filippetto, A. S., Lima, R., & Barbosa, J. L. V. (2021). A risk prediction model for software project management based on similarity analysis of context histories. Information and Software Technology, 131, 106497. https://doi.org/10.1016/j.infsof.2020.106497
  • Fukuda, S., Matsuda, Y., Tani, Y., Arakawa, Y., & Yasumoto, K. (2020). Predicting depression and anxiety mood by Wrist-Worn Sleep Sensor. 2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2020. pp. 1–6. https://doi.org/10.1109/PerComWorkshops48775.2020.9156176
  • Gaggioli, A., Pioggia, G., Tartarisco, G., Baldus, G., Corda, D., Cipresso, P., & Riva, G. (2013). A mobile data collection platform for mental health research. Personal and Ubiquitous Computing, 17(2), 241–251. https://doi.org/10.1007/s00779-011-0465-2
  • Gedam, S., & Paul, S. (2021). A review on mental stress detection using wearable sensors and machine learning techniques. IEEE Access. 9, 84045–84066. https://doi.org/10.1109/ACCESS.2021.3085502
  • Gjoreski, M., Luštrek, M., Gams, M., & Gjoreski, H. (2017). Monitoring stress with a wrist device using context. Journal of Biomedical Informatics, 73, 159–170. https://doi.org/10.1016/j.jbi.2017.08.006
  • Goetz, C., Bavaresco, R., Kunst, R., & Barbosa, J. (2022). Industrial intelligence in the care of workers’ mental health: A review of status and challenges. International Journal of Industrial Ergonomics, 87, 103234. https://doi.org/10.1016/j.ergon.2021.103234
  • Hadi, W., El-Khalili, N., AlNashashibi, M., Issa, G., & AlBanna, A. A. (2019). Application of data mining algorithms for improving stress prediction of automobile drivers: A case study in Jordan. Computers in Biology and Medicine, 114, 103474. https://doi.org/10.1016/j.compbiomed.2019.103474
  • Heckler, W. F., De Carvalho, J. V., & Barbosa, J. L. V. (2022). Machine learning for suicidal ideation identification: A systematic literature review. Computers in Human Behavior, 128, 107095. https://doi.org/10.1016/j.chb.2021.107095
  • Heng, Y. (2021). ReWIND: Psychoeducation Game Leveraging Cognitive Behavioral Therapy (CBT) to enhance emotion control for generalized anxiety disorder. Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3411763.3451851
  • Hovsepian, K., Al’absi, M., Ertin, E., Kamarck, T., Nakajima, M., & Kumar, S. (2015). CStress: Towards a gold standard for continuous stress assessment in the mobile environment. UbiComp 2015 – Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. pp. 493–504. https://doi.org/10.1145/2750858.2807526
  • Huang, Y., Xiong, H., Leach, K., Zhang, Y., Chow, P., Fua, K., Teachman, B., & Barnes, L. (2016). Assessing social anxiety using GPS trajectories and point-of-interest data. UbiComp 2016 – Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. pp. 898–903. https://doi.org/10.1145/2971648.2971761
  • Keshav, S. (2007). How to read a paper. ACM SIGCOMM Computer Communication Review, 37(3), 83–84. https://doi.org/10.1145/1273445.1273458
  • King, Z., Moskowitz, J., Egilmez, B., Zhang, S., Zhang, L., Bass, M., Rogers, J., Ghaffari, R., Wakschlag, L., & Alshurafa, N. (2019). micro-Stress EMA. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(3), 1–22. https://doi.org/10.1145/3351249
  • Koopman, F., Stoof, S., Straub, R., Van Maanen, M., Vervoordeldonk, M., & Tak, P. (2011). Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Molecular Medicine, 17(9–10), 937–948. https://doi.org/10.2119/molmed.2011.00065
  • Kushki, A., Khan, A., Brian, J., & Anagnostou, E. A. (2015). Kalman filtering framework for physiological detection of anxiety-related arousal in children with autism spectrum disorder. IEEE Transactions on Bio-Medical Engineering, 62(3), 990–1000. https://doi.org/10.1109/TBME.2014.2377555
  • Lim, Y., Ayesh, A., & Stacey, M. (2020). Continuous stress monitoring under varied demands using unobtrusive devices. International Journal of Human–Computer Interaction, 36(4), 326–340. https://doi.org/10.1080/10447318.2019.1642617
  • Lu, H., Rabbi, M., Chittaranjan, G., Frauendorfer, D., Mast, M., Campbell, A., Gatica-Perez, D., & Choudhury, T. (2012). StressSense: Detecting stress in unconstrained acoustic environments using smartphones. UbiComp’12 – Proceedings of the 2012 ACM Conference on Ubiquitous Computing. pp. 351–360. https://doi.org/10.1145/2370216.2370270
  • Lundberg, U. (2006). Stress, subjective and objective health. International Journal of Social Welfare, 15(s1), S41–S48. https://doi.org/10.1111/j.1468-2397.2006.00443.x
  • Machado, S., Tavares, J., Martins, M., Barbosa, J., González, G., & Leithardt, V. (2021). Ambient intelligence based on IoT for assisting people with Alzheimer’s Disease through context histories. Electronics, 10(11), 1260. https://doi.org/10.3390/electronics10111260
  • Mahmud, M., Fang, H., & Wang, H. (2019). An integrated wearable sensor for unobtrusive continuous measurement of autonomic nervous system. IEEE Internet of Things Journal, 6(1), 1104–1113. https://doi.org/10.1109/JIOT.2018.2868235
  • Martini, B., Helfer, G., Barbosa, J., Espinosa Modolo, R., Silva, M., Figueiredo, R., Mendes, A., Silva, L., & Leithardt, V. (2021). IndoorPlant: A model for intelligent services in indoor agriculture based on context histories. Sensors, 21(5), 1631. https://doi.org/10.3390/s21051631
  • Maxhuni, A., Hernandez-Leal, P., Morales, E., Sucar, L., Osmani, V., & Mayora, O. (2021). Unobtrusive stress assessment using smartphones. IEEE Transactions on Mobile Computing, 20(6), 2313–2325. https://doi.org/10.1109/TMC.2020.2974834
  • MedlinePlus. (2021). High blood pressure – Hypertension. (U.S. National Library of Medicine). https://medlineplus.gov/highbloodpressure.html
  • Mishra, V., Pope, G., Lord, S., Lewia, S., Lowens, B., Caine, K., Sen, S., Halter, R., & Kotz, D. (2018a). The case for a commodity hardware solution for stress detection. UbiComp/ISWC 2018 – Adjunct Proceedings of the 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2018 ACM International Symposium on Wearable Computers. pp. 1717–1728. https://doi.org/10.1145/3267305.3267538
  • Mishra, V., Hao, T., Sun, S., Walter, K., Ball, M., Chen, C., & Zhu, X. (2018b). Investigating the role of context in perceived stress detection in the wild. UbiComp/ISWC 2018 – Adjunct Proceedings of the 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2018 ACM International Symposium on Wearable Computers. pp. 1708–1716. https://doi.org/10.1145/3267305.3267537
  • Mishra, V., Pope, G., Lord, S., Lewia, S., Lowens, B., Caine, K., Sen, S., Halter, R., & Kotz, D. (2020). Continuous detection of physiological stress with commodity hardware. ACM Transactions on Computing for Healthcare, 1(2), 1–30. https://doi.org/10.1145/3361562
  • Montesinos, V., Dell’Agnola, F., Arza, A., Aminifar, A., & Atienza, D. (2019). Multi-modal acute stress recognition using off-the-shelf wearable devices. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 2196–2201, https://doi.org/10.1109/EMBC.2019.8857130
  • Mozos, O., Sandulescu, V., Andrews, S., Ellis, D., Bellotto, N., Dobrescu, R., & Ferrandez, J. (2017). Stress detection using wearable physiological and sociometric sensors. International Journal of Neural Systems, 27(2), 1650041. https://doi.org/10.1142/S0129065716500416
  • Oliveira, C., Maia, M., Vairinhos, M., Pereira, A., Oliveira, I., & Vagos, P. (2022). A social anxiety mobile intervention for college students attending therapy: A usability and acceptability study. International Journal of Human–Computer Interaction, 38(14), 1333–1344. https://doi.org/10.1080/10447318.2021.2002042
  • Pal, S., Mukhopadhyay, S., & Suryadevara, N. (2021). Development and progress in sensors and technologies for human emotion recognition. Sensors, 21(16), 5554. https://doi.org/10.3390/s21165554
  • Panagiotakopoulos, T., Lyras, D., Livaditis, M., Sgarbas, K., Anastassopoulos, G., & Lymberopoulos, D. (2010). A contextual data mining approach toward assisting the treatment of anxiety disorders. IEEE Transactions on Information Technology in Biomedicine, 14(3), 567–581. https://doi.org/10.1109/TITB.2009.2038905
  • Panicker, S., & Gayathri, P. (2019). A survey of machine learning techniques in physiology based mental stress detection systems. Biocybernetics and Biomedical Engineering, 39(2), 444–469. https://doi.org/10.1016/j.bbe.2019.01.004
  • Paredes, P., Gilad-Bachrach, R., Czerwinski, M., Roseway, A., Rowan, K., & Hernandez, J. (2014). PopTherapy: Coping with stress through pop-culture. Proceedings – PERVASIVEHEALTH 2014: 8th International Conference on Pervasive Computing Technologies for Healthcare. pp. 109–117, https://doi.org/10.4108/icst.pervasivehealth.2014.255070
  • Partala, T., & Surakka, V. (2003). Pupil size variation as an indication of affective processing. International Journal of Human-Computer Studies, 59(1–2), 185–198. https://doi.org/10.1016/S1071-5819(03)00017-X
  • Patwardhan, M., Amresh, A., Stoll, R., Gary, K., Hamel, D., & Pina, A. (2015). Designing a mobile application to support the indicated prevention and early intervention of childhood anxiety. Proceedings – Wireless Health 2015, WH 2015. pp. 1–8. https://doi.org/10.1145/2811780.2811954
  • Pejovic, V., Mehrotra, A., & Musolesi, M. (2015). Anticipatory mobile digital health: Towards personalised proactive therapies and prevention strategies. CoRR, abs/1508.03722, https://doi.org/10.48550/arXiv.1508.03722
  • Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic mapping studies in software engineering. Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering. pp. 68–77. https://doi.org/10.14236/ewic/EASE2008.8
  • Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015). Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology, 64, 1–18. https://doi.org/10.1016/j.infsof.2015.03.007
  • Petry, M., Barbosa, J., Rigo, S., Dias, L., & Büttenbender, P. (2020). Toward a ubiquitous model to assist the treatment of people with depression. Universal Access in the Information Society, 19(4), 841–854. https://doi.org/10.1007/s10209-019-00697-4
  • Plarre, K., Raij, A., Hossain, S., Ali, A., Nakajima, M., Al’Absi, M., Ertin, E., Kamarck, T., Kumar, S., Scott, M., Siewiorek, D., Smailagic, A., Wittmers, L. (2011). Continuous inference of psychological stress from sensory measurements collected in the natural environment. Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN’11. pp. 97–108.
  • Pluntke, U., Gerke, S., Sridhar, A., Weiss, J., & Michel, B. (2019). Evaluation and classification of physical and psychological stress in firefighters using heart rate variability. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 2207–2212. https://doi.org/10.1109/EMBC.2019.8856596
  • Puli, A., & Kushki, A. (2020). Toward automatic anxiety detection in autism: A real-time algorithm for detecting physiological arousal in the presence of motion. IEEE Transactions on Bio-Medical Engineering, 67(3), 646–657. https://doi.org/10.1109/TBME.2019.2919273
  • Radenkovic, B., & Kocovic, P. (2017). From ubiquitous computing to the internet of things. Advances in Wireless Technologies and Telecommunication, 1–42. https://doi.org/10.4018/978-1-5225-2437-3.ch001
  • Rodrigues, J., Kaiseler, M., Aguiar, A., Silva Cunha, J., & Barros, J. (2015). A mobile sensing approach to stress detection and memory activation for public bus drivers. IEEE Transactions on Intelligent Transportation Systems, 16(6), 3294–3303. https://doi.org/10.1109/TITS.2015.2445314
  • Rosmond, R., Dallman, M., & Bjorntorp, P. (1998). Stress-related cortisol secretion in men: Relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. The Journal of Clinical Endocrinology & Metabolism, 83(6), 1853–1859. https://doi.org/10.1210/jcem.83.6.4843
  • Saeb, S., Lattie, E., Kording, K., & Mohr, D. (2017). Mobile phone detection of semantic location and its relationship to depression and anxiety. JMIR mHealth and uHealth, 5(8), e112. https://doi.org/10.2196/mhealth.7297
  • Sandulescu, V., Andrews, S., Ellis, D., Dobrescu, R., & Martinez-Mozos, O. (2015). Mobile app for stress monitoring using voice features. 2015 E-Health and Bioengineering Conference (EHB). pp. 1–4. https://doi.org/10.1109/EHB.2015.7391411
  • Sano, A., & Picard, R. (2013). Stress recognition using wearable sensors and mobile phones. Proceedings – 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, ACII 2013. pp. 671–676, https://doi.org/10.1109/ACII.2013.117
  • Sarsenbayeva, Z., Berkel, N., Hettiachchi, D., Jiang, W., Dingler, T., Velloso, E., Kostakos, V., & Goncalves, J. (2019). Measuring the effects of stress on mobile interaction. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(1), 1–18. https://doi.org/10.1145/3314411
  • Sevil, M., Rashid, M., Hajizadeh, I., Askari, M. R., Hobbs, N., Brandt, R., Park, M., Quinn, L., & Cinar, A. (2021). Discrimination of simultaneous psychological and physical stressors using wristband biosignals. Computer Methods and Programs in Biomedicine, 199, 105898. https://doi.org/10.1016/j.cmpb.2020.105898
  • Shanmugasundaram, G., Yazhini, S., Hemapratha, E., & Nithya, S. (2019). A comprehensive review on stress detection techniques. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). pp. 1–6. https://doi.org/10.1109/ICSCAN.2019.8878795
  • Shaukat-Jali, R., Zalk, N., & Boyle, D. (2021). Detecting subclinical social anxiety using physiological data from a wrist-worn wearable: Small-scale feasibility study. JMIR Formative Research, 5(10), e32656. https://doi.org/10.2196/32656
  • Silva, E., Aguiar, J., Reis, L., Sá, J., Gonçalves, J., & Carvalho, V. (2020). Stress among Portuguese medical students: The EuStress solution. Journal of Medical Systems, 44(2), 45. https://doi.org/10.1007/s10916-019-1520-1
  • Silva, J. (2021). Normal blood oxygen levels: What is safe and what is low? Medical News Today, https://www.medicalnewstoday.com/articles/321044
  • Silverthorn, D., & Michael, J. (2013). Cold stress and the cold pressor test. Advances in Physiology Education, 37(1), 93–96. https://doi.org/10.1152/advan.00002.2013
  • Singh, S., Rathore, S., Alfarraj, O., Tolba, A., & Yoon, B. (2022). A framework for privacy-preservation of IoT healthcare data using Federated Learning and blockchain technology. Future Generation Computer Systems, 129, 380–388. https://doi.org/10.1016/j.future.2021.11.028
  • Smeets, T., Cornelisse, S., Quaedflieg, C., Meyer, T., Jelicic, M., & Merckelbach, H. (2012). Introducing the Maastricht Acute Stress Test (MAST): A quick and non-invasive approach to elicit robust autonomic and glucocorticoid stress responses. Psychoneuroendocrinology, 37(12), 1998–2008. https://doi.org/10.1016/j.psyneuen.2012.04.012
  • Soltani, E., Bazrafshan, A., Moghimi, E., Hedayati, A., & Sheikholeslami, S. (2020). Psychometric properties of the Persian Version of Youth anxiety measure for DSM-5 (YAM-5) in nonclinical sample. Archives of Psychiatry and Psychotherapy, 22(4), 58–65. https://doi.org/10.12740/APP/118576
  • Soto, M., Satterfield, C., Fritz, T., Murphy, G. C., Shepherd, D. C., & Kraft, N. (2021). Observing and predicting knowledge worker stress, focus and awakeness in the wild. International Journal of Human-Computer Studies, 146, 102560. https://doi.org/10.1016/j.ijhcs.2020.102560
  • Tartarisco, G., Baldus, G., Corda, D., Raso, R., Arnao, A., Ferro, M., Gaggioli, A., & Pioggia, G. (2012). Personal Health System architecture for stress monitoring and support to clinical decisions. Computer Communications, 35(11), 1296–1305. https://doi.org/10.1016/j.comcom.2011.11.015
  • Teelhawod, B., Akhtar, F., Heyat, M., Tripathi, P., Mehrotra, R., Asfaw, A., Shorman, O., & Masadeh, M. (2021). Machine learning in E-health: A Comprehensive Survey of Anxiety. 2021 International Conference on Data Analytics for Business and Industry (ICDABI). pp. 167–172, https://doi.org/10.1109/ICDABI53623.2021.9655966
  • Thoits, P. (2010). Stress and health: Major findings and policy implications. Journal of Health and Social Behavior, 51(1_suppl), S41–S53. https://doi.org/10.1177/0022146510383499
  • Tzafilkou, K., Economides, A., & Protogeros, N. (2022). Mobile sensing for emotion recognition in smartphones: A literature review on non-intrusive methodologies. International Journal of Human–Computer Interaction, 38(11), 1037–1051. https://doi.org/10.1080/10447318.2021.1979290
  • Unsoo Ha, U., Madani, S., & Adib, F. (2021). WiStress: Contactless stress monitoring using wireless signals. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(3), 1–37. https://doi.org/10.1145/3478121
  • Ulrich-Lai, Y., & Herman, J. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews. Neuroscience, 10(6), 397–409. https://doi.org/10.1038/nrn2647
  • Vildjiounaite, E., Kallio, J., Kyllönen, V., Nieminen, M., Määttänen, I., Lindholm, M., Mäntyjärvi, J., & Gimel’farb, G. (2018). Unobtrusive stress detection on the basis of smartphone usage data. Personal and Ubiquitous Computing, 22(4), 671–688. https://doi.org/10.1007/s00779-017-1108-z
  • Visuri, A., Poguntke, R., & Kuosmanen, E. (2018). Proposing design recommendations for an intelligent recommender system logging stress. ACM International Conference Proceeding Series. pp. 411–417. https://doi.org/10.1145/3282894.3289733
  • Vrijkotte, T., Doornen, L., & Geus, E. (2000). Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability. Hypertension, 35(4), 880–886. https://doi.org/10.1161/01.hyp.35.4.880
  • Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., Zhou, X., Ben-Zeev, D., & Campbell, A. (2014). Studentlife: Assessing mental health, academic performance and behavioral trends of college students using smartphones. UbiComp 2014 – Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. pp. 3–14, https://doi.org/10.1145/2632048.2632054
  • Wen, W., Liu, G., Mao, Z.-H., Huang, W., Zhang, X., Hu, H., Yang, J., & Jia, W. (2020). Toward constructing a real-time social anxiety evaluation system: Exploring effective heart rate features. IEEE Transactions on Affective Computing, 11(1), 100–110. https://doi.org/10.1109/TAFFC.2018.2792000
  • World Health Organization. (2017), Depression and other common mental disorders: Global Health Estimates, Technical Report. https://apps.who.int/iris/bitstream/handle/10665/254610 W?sequence = 1
  • Wu, M., Cao, H., Nguyen, H., Surmacz, K., Hargrove, C. (2015). Modeling perceived stress via HRV and accelerometer sensor streams. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. 2015 November, pp. 1625–1628. https://doi.org/10.1109/EMBC.2015.7318686
  • Zaman, S., Wesley, A., Silva, D., Buddharaju, P., Akbar, F., Gao, G., Mark, G., Gutierrez-Osuna, R., & Pavlidis, I. (2019). Stress and productivity patterns of interrupted, synergistic, and antagonistic office activities. Scientific Data, 6(1), 264. https://doi.org/10.1038/s41597-019-0249-5
  • Zakaria, C., Balan, R., & Lee, Y. (2019). Stressmon: Scalable detection of perceived stress and depression using passive sensing of changes in work routines and group interactions. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1–29. https://doi.org/10.1145/3359139
  • Zhang, L., King, Z., Egilmez, B., Reeder, J., Ghaffari, R., Rogers, J., Rosen, K., Bass, M., Moskowitz, J., Tandon, D., Wakschlag, L., & Alshurafa, N. (2018). Measuring fine-grained heart-rate using a flexible wearable sensor in the presence of noise. 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN). pp. 160–164. https://doi.org/10.1109/BSN.2018.8329683
  • Zubair, M., Yoon, C., Kim, H., Kim, J., & Kim, J. (2015). Smart wearable band for stress detection. 2015 5th International Conference on IT Convergence and Security, ICITCS 2015 – Proceedings. pp. 1–4. https://doi.org/10.1109/ICITCS.2015.7293017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.