430
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effects of Different Viewing Angles and Visual Stimuli on the Performance of MI Brain-Computer Interfaces

ORCID Icon, ORCID Icon, , , &
Pages 1267-1281 | Received 03 Jul 2022, Accepted 14 Oct 2022, Published online: 07 Nov 2022

References

  • Alimardani, M., & Gherman, D. E. (2022). Individual differences in motor imagery BCIs: A study of gender, mental states and mu suppression [Paper presentation]. 2022 10th International Winter Conference on Brain-Computer Interface (BCI), Gangwon-do, Republic of Korea, 1–7.
  • Angelini, M., Del Vecchio, M., Lopomo, N. F., Gobbo, M., & Avanzini, P. (2021). Perspective-dependent activation of frontoparietal circuits during the observation of a static body effector. Brain Research, 1769, 147604. https://doi.org/10.1016/j.brainres.2021.147604
  • Angelini, M., Fabbri-Destro, M., Lopomo, N. F., Gobbo, M., Rizzolatti, G., & Avanzini, P. (2018). Perspective-dependent reactivity of sensorimotor mu rhythm in alpha and beta ranges during action observation: An EEG study. Scientific Reports, 8(1), 12429. https://doi.org/10.1038/s41598-018-30912-w.
  • Betti, S., Castiello, U., Guerra, S., & Sartori, L. (2017). Overt orienting of spatial attention and corticospinal excitability during action observation are unrelated. PLOS One, 12(3), e0173114. https://doi.org/10.1371/journal.pone.0173114
  • Bhoir, S., Hasanzadeh, S., Esmaeili, B., Dodd, M., & Fardhosseini, S. (2015). Measuring construction workers' attention using eye-tracking technology. In Proc., ICSC15: The Canadian Society for Civil Engineering 5th Int./11th Construction Specialty Conf. Univ. of British Columbia (pp. 1–11). Vancouver, Canada.
  • Bian, Y., Qi, H., Zhao, L., Ming, D., Guo, T., & Fu, X. (2018). Improvements in event-related desynchronization and classification performance of motor imagery using instructive dynamic guidance and complex tasks. Computers in Biology and Medicine, 96, 266–273. https://doi.org/10.1016/j.compbiomed.2018.03.018
  • Caggiano, V., Fogassi, L., Rizzolatti, G., Pomper, J. K., Thier, P., Giese, M. A., & Casile, A. (2011). View-based encoding of actions in mirror neurons of area f5 in Macaque premotor cortex. Current Biology, 21(2), 144–148. https://doi.org/10.1016/j.cub.2010.12.022.
  • Chan, M. M. Y., & Han, Y. M. Y. (2020). Differential mirror neuron system (MNS) activation during action observation with and without social-emotional components in autism: A meta-analysis of neuroimaging studies. Molecular Autism, 11(1), 72. https://doi.org/10.1186/s13229-020-00374-x
  • Chen, S., & Epps, J. (2014). Using task-induced pupil diameter and blink rate to infer cognitive load. Human–Computer Interaction, 29(4), 390–413. https://doi.org/10.1080/07370024.2014.892428
  • Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1990). Attentional modulation of neural processing of shape, color, and velocity in humans. Science, 248(4962), 1556–1559. https://doi.org/10.1126/science.2360050.
  • Drew, A. R., Quandt, L. C., & Marshall, P. J. (2015). Visual influences on sensorimotor EEG responses during observation of hand actions. Brain Research, 1597(9), 119–128. https://doi.org/10.1016/j.brainres.2014.11.048
  • Eldar, E., Cohen, J. D., & Niv, Y. (2013). The effects of neural gain on attention and learning. Nature Neuroscience, 16(8), 1146–1153. https://doi.org/10.1038/nn.3428.
  • Errante, A., & Fogassi, L. (2021). Functional lateralization of the mirror neuron system in monkey and humans. Symmetry, 13(1), 77. https://doi.org/10.3390/sym13010077.
  • Feng, Z., He, Q., Zhang, J., Wang, L., Zhu, X., & Qiu, M. (2020). A hybrid BCI system based on motor imagery and transient visual evoked potential. Multimedia Tools and Applications, 79(15–16), 10327–10340. https://doi.org/10.1007/s11042-019-7607-3
  • Fernandez-Fraga, S., Aceves-Fernandez, M., & Pedraza-Ortega, J. (2019). EEG data collection using visual evoked, steady state visual evoked and motor image task, designed to brain computer interfaces (BCI) development. Data in Brief, 25, 103871. https://doi.org/10.1016/j.dib.2019.103871
  • Fiave, P. A., & Nelissen, K. (2021). Motor resonance in monkey parietal and premotor cortex during action observation: Influence of viewing perspective and effector identity. NeuroImage, 224, 117398. https://doi.org/10.1016/j.neuroimage.2020.117398.
  • Fitzgibbon, B. M., Fitzgerald, P. B., & Enticott, P. G. (2014). An examination of the influence of visuomotor associations on interpersonal motor resonance. Neuropsychologia, 56, 439–446. https://doi.org/10.1016/j.neuropsychologia.2014.02.018
  • Frenkel-Toledo, S., Bentin, S., Perry, A., Liebermann, D. G., & Soroker, N. (2013). Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements. Brain Research, 1509, 43–57. https://doi.org/10.1016/j.brainres.2013.03.004.
  • Fu, Y., & Franz, E. A. (2014). Viewer perspective in the mirroring of actions. Experimental Brain Research, 232(11), 3665–3674. https://doi.org/10.1007/s00221-014-4042-6.
  • Gonçales, L. J., Farias, K., Kupssinskü, L. S., & Segalotto, M. (2022). An empirical evaluation of machine learning techniques to classify code comprehension based on EEG data. Expert Systems with Applications, 203, 117354. https://doi.org/10.1016/j.eswa.2022.117354
  • Guger, C., Ramoser, H., & Pfurtscheller, G. (2000). Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI). IEEE Transactions on Rehabilitation Engineering, 8(4), 447–456. https://doi.org/10.1109/86.895947.
  • He, B., Yuan, H., Meng, J., & Gao, S. (2020). Brain–computer interfaces. Springer.
  • He, J., Lan, W., Yang, H., Lin, P., Leng, Y., Wang, R., Iramina, K., & Ge, S. (2021). Investigating effective brain networks of action observation tasks from different visual perspectives based on generalized partial directed coherence: An fMRI study [Paper presentation]. 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Xi’an, China, vol. 5, 801–807.
  • Idowu, O. P., Adelopo, O., Ilesanmi, A. E., Li, X., Samuel, O. W., Fang, P., & Li, G. (2021). Neuro-evolutionary approach for optimal selection of EEG channels in motor imagery based BCI application. Biomedical Signal Processing and Control, 68, 102621. https://doi.org/10.1016/j.bspc.2021.102621
  • Islam, A. T., & Rahaman, N. (2019). A study on tiredness assessment by using eye blink detection. Jurnal Kejuruteraan, 31(2), 209–214. https://doi.org/10.17576/jkukm-2019-31(2)-04
  • Jacquet, T., Lepers, R., Poulin-Charronnat, B., Bard, P., Pfister, P., & Pageaux, B. (2021). Mental fatigue induced by prolonged motor imagery increases perception of effort and the activity of motor areas. Neuropsychologia, 150, 107701. https://doi.org/10.1016/j.neuropsychologia.2020.107701
  • Janapati, R., Dalal, V., Govardhan, N., & Sengupta, R. (2021). Signal processing algorithms based on evolutionary optimization techniques in the BCI: A review. In S. Smys, J. M. R. S. Tavares, R. Bestak, & F. Shi (Eds.), Computational Vision and Bio-Inspired Computing Advances in Intelligent Systems and Computing (vol. 1318, pp. 165–174). Springer.
  • Jeunet, C., N’Kaoua, B., & Lotte, F. (2016). Chapter 1 – advances in user-training for mental-imagery-based BCI control: Psychological and cognitive factors and their neural correlates. In D. Coyle (Ed.), Progress in brain research (Vol. 228, pp. 3–35). Elsevier.
  • Jeunet, C., N'Kaoua, B., & Lotte, F. (2017). Towards a cognitive model of MI-BCI user training [Paper presentation]. International Graz BCI Conference.
  • Kapgate, D. (2022). Efficient quadcopter flight control using hybrid SSVEP + P300 visual brain computer interface. International Journal of Human–Computer Interaction, 38(1), 42–52. https://doi.org/10.1080/10447318.2021.1921482
  • Kemmerer, D. (2021). What modulates the mirror neuron system during action observation?: Multiple factors involving the action, the actor, the observer, the relationship between actor and observer, and the context. Progress in Neurobiology, 205, 102128. https://doi.org/10.1016/j.pneurobio.2021.102128
  • Ko, D. H., Shin, D. H., & Kam, T. E. (2021). Attention-based spatio-temporal-spectral feature learning for subject-specific EEG classification [Paper presentation]. 2021 9th International Winter Conference on Brain-Computer Interface (BCI), 1–4. https://doi.org/10.1109/BCI51272.2021.9385293
  • Lee, M.-H., Kwon, O.-Y., Kim, Y.-J., Kim, H.-K., Lee, Y.-E., Williamson, J., Fazli, S., & Lee, S.-W. (2019). EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy. GigaScience, 8(5), 1–16. https://doi.org/10.1093/gigascience/giz002.
  • Lee, S., Kim, Y., Hwang, S., Kim, H., & Kim, D. (2020). Importance of reliable EEG data in motor imagery classification: Attention level-based approach [Paper presentation]. The 2020 8th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Korea (South), 1–4.
  • Leonetti, A., Puglisi, G., Siugzdaite, R., Ferrari, C., Cerri, G., & Borroni, P. (2015). What you see is what you get: Motor resonance in peripheral vision. Experimental Brain Research, 233(10), 3013–3022. https://doi.org/10.1007/s00221-015-4371-0.
  • Li, D., Xu, J., Wang, J., Fang, X., & Ji, Y. (2020). A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(12), 2615–2626. https://doi.org/10.1109/TNSRE.2020.3037326.
  • Malathi, M., Aloy Anuja Mary, G., Senthil Kumar, J., Sinthia, P., & Nalini, M. (2022). An estimation of PCA feature extraction in EEG-based emotion prediction with support vector machines. Proceedings of Data Analytics and Management, 90, 651–664. https://doi.org/10.1007/978-981-16-6289-8_53.
  • Mladenović, J., Mattout, J., & Lotte, F. (2018). A generic framework for adaptive EEG-based BCI training and operation. In C. S. Nam, A. Nijholt, & F. Lotte (Eds.), Brain–Computer Interfaces Handbook (pp. 595–612). CRC Press.
  • Mott, R. O., Hawthorne, S. J., & McBride, S. D. (2020). Blink rate as a measure of stress and attention in the domestic horse (Equus caballus). Scientific Reports, 10(1), 21409. https://doi.org/10.1038/s41598-020-78386-z.
  • Nilsson, T. (2006). Legibility of colored print. 10th Congress of the International Colour Association: AIC Colour (pp. 1444–1456), Spain. CRC Press.
  • Nishimura, Y., Ikeda, Y., Suematsu, A., & Higuchi, S. (2018). Effect of visual orientation on mu suppression in children: A comparative EEG study with adults. Journal of Physiological Anthropology, 37(1), 16. https://doi.org/10.1186/s40101-018-0175-9.
  • Pfurtscheller, G., & Berghold, A. (1989). Patterns of cortical activation during planning of voluntary movement. Electroencephalography and Clinical Neurophysiology, 72(3), 250–258. https://doi.org/10.1016/0013-4694(89)90250-2
  • Pfurtscheller, G., Scherer, R., Leeb, R., Keinrath, C., Neuper, C., Lee, F., & Bischof, H. (2007). Viewing moving objects in virtual reality can change the dynamics of sensorimotor EEG rhythms. Presence: Teleoperators and Virtual Environments, 16(1), 111–118. https://doi.org/10.1162/pres.16.1.111.
  • Pineda, J. A., Silverman, D. S., Vankov, A., & Hestenes, J. (2003). Learning to control brain rhythms: Making a brain-computer interface possible. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 181–184. https://doi.org/10.1109/TNSRE.2003.814445
  • Roc, A., Pillette, L., Mladenovic, J., Benaroch, C., N’Kaoua, B., Jeunet, C., & Lotte, F. (2021). A review of user training methods in brain computer interfaces based on mental tasks. Journal of Neural Engineering, 18(1), 011002. https://doi.org/10.1088/1741-2552/abca17
  • Ron-Angevin, R., & Díaz-Estrella, A. (2009). Brain–computer interface: Changes in performance using virtual reality techniques. Neuroscience Letters, 449(2), 123–127. https://doi.org/10.1016/j.neulet.2008.10.099
  • Roy, A. M. (2022). An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces. Biomedical Signal Processing and Control, 74, 103496. https://doi.org/10.1016/j.bspc.2022.103496.
  • Schoenfeld, M., Hopf, J.-M., Martinez, A., Mai, H., Sattler, C., Gasde, A., Heinze, H.-J., & Hillyard, S. (2007). Spatio-temporal analysis of feature-based attention. Cerebral Cortex, 17(10), 2468–2477. https://doi.org/10.1093/cercor/bhl154.
  • Singh, A., Hussain, A. A., Lal, S., & Guesgen, H. W. (2021). A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface. Sensors, 21(6), 2173. https://doi.org/10.3390/s21062173.
  • Sun, J., Wei, M., Luo, N., Li, Z., & Wang, H. (2022). Euler common spatial patterns for EEG classification. Medical & Biological Engineering & Computing, 60(3), 753–767. https://doi.org/10.1007/s11517-021-02488-7
  • Tinelli, F., Cioni, G., Sandini, G., Turi, M., & Morrone, M. C. (2017). Visual information from observing grasping movement in allocentric and egocentric perspectives: Development in typical children. Experimental Brain Research, 235(7), 2039–2047. https://doi.org/10.1007/s00221-017-4944-1.
  • Unsworth, N., & Robison, M. K. (2016). Pupillary correlates of lapses of sustained attention. Cognitive, Affective & Behavioral Neuroscience, 16(4), 601–615. https://doi.org/10.3758/s13415-016-0417-4.
  • Van Den Brink, R. L., Murphy, P. R., & Nieuwenhuis, S. (2016). Pupil diameter tracks lapses of attention. PLOS One, 11(10), e0165274. https://doi.org/10.1371/journal.pone.0165274
  • van der Laan, L. N., Hooge, I. T. C., de Ridder, D. T. D., Viergever, M. A., & Smeets, P. A. M. (2015). Do you like what you see? The role of first fixation and total fixation duration in consumer choice. Food Quality and Preference, 39, 46–55. https://doi.org/10.1016/j.foodqual.2014.06.015.
  • Verstappen, V. J. M. P., Pikaar, E. N., & Zon, R. G. D. (2022). Assessing the impact of driver advisory systems on train driver workload, attention allocation and safety performance. Applied Ergonomics, 100, 103645. https://doi.org/10.1016/j.apergo.2021.103645.
  • Xu, M., Xiao, X., Wang, Y., Qi, H., Jung, T. P., & Ming, D. (2018). A brain–computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli. IEEE Transactions on Bio-Medical Engineering, 65(5), 1166–1175. https://doi.org/10.1109/TBME.2018.2799661.
  • Zhong, S., Liu, Y., Yu, Y., Tang, J., Zhou, Z., & Hu, D. (2020). A dynamic user interface based BCI environmental control system. International Journal of Human–Computer Interaction, 36(1), 55–66. https://doi.org/10.1080/10447318.2019.1604473.
  • Zhou, Q., Jiang, Y., Lin, J., Yao, L., & Xv, K. (2020). Pre-cue EEG rhythms associated with MI-BCI performance variation. In Proceedings of the 2020 5th International Conference on Biomedical Signal and Image Processing (ICBIP ’20) (pp. 41–45). Association for Computing Machinery. https://doi.org/10.1145/3417519.3417556
  • Zhu, F., Gao, J., Yang, J., & Ye, N. (2022). Neighborhood linear discriminant analysis. Pattern Recognition, 123, 108422. https://doi.org/10.1016/j.patcog.2021.108422

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.