623
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Impact of AR Navigation Display Methods on Wayfinding Performance and Spatial Knowledge Acquisition

ORCID Icon, , , & ORCID Icon
Pages 2676-2696 | Received 18 Jul 2022, Accepted 12 Jan 2023, Published online: 26 Jan 2023

References

  • Ahmadpoor, N., & Heath, T. (2018). Data and GPS systems: Comparing navigation and landmark knowledge between GPS Users and Non-GPS Users. In Data, architecture and the experience of place (pp. 130–156). Routledge.
  • Ahmadpoor, N., & Shahab, S. (2019). Spatial knowledge acquisition in the process of navigation: A review. Current Urban Studies, 07(01), 1–19. https://doi.org/10.4236/cus.2019.71001
  • Amirian, P., & Basiri, A. (2016). Landmark-based pedestrian navigation using augmented reality and machine learning. In Progress in cartography (pp. 451–465). Springer.
  • An, Z., Xu, X., Yang, J., Liu, Y., & Yan, Y. (2018). A real-time three-dimensional tracking and registration method in the AR-HUD system. IEEE Access. 6, 43749–43757. https://doi.org/10.1109/ACCESS.2018.2864224
  • Arnone, M., Delmastro, T., & Saporito, L. (2014). Passenger mobility: New trends. In Analytical decision-making methods for evaluating sustainable transport in European corridors (pp. 3–15). Springer.
  • Baron, N. S. (2021). Know what? How digital technologies undermine learning and remembering. Journal of Pragmatics, 175, 27–37. https://doi.org/10.1016/j.pragma.2021.01.011
  • Ben-Elia, E. (2021). An exploratory real-world wayfinding experiment: A comparison of drivers’ spatial learning with a paper map vs. turn-by-turn audiovisual route guidance. Transportation Research Interdisciplinary Perspectives, 9, 100280. https://doi.org/10.1016/j.trip.2020.100280
  • Bhorkar, G. (2017). A survey of augmented reality navigation. arXiv preprint arXiv:1708.05006.
  • Bjork, S., Redstrom, J. (2000, October). Redefining the focus and context of focus + context visualization. In IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings (pp. 85–89). IEEE.
  • Boustila, S., Milgram, P., & Jamieson, G. A. (2020, March). Map displays and landmark effects on wayfinding in unfamiliar environments. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) (pp. 628–629). IEEE. https://doi.org/10.1109/VRW50115.2020.00165
  • Brata, K. C., & Liang, D. (2020). Comparative study of user experience on mobile pedestrian navigation between digital map interface and location-based augmented reality. International Journal of Electrical and Computer Engineering, 10(2), 2037–2044. http://doi.org/10.11591/ijece.v10i2.pp2037-2044
  • Brügger, A., Richter, K. F., & Fabrikant, S. I. (2019). How does navigation system behavior influence human behavior? Cognitive research, 4(1), 1–22. https://doi.org/10.1186/s41235-019-0156-5
  • Brunyé, T. T., Moran, J. M., Houck, L. A., Taylor, H. A., & Mahoney, C. R. (2016). Registration errors in beacon-based navigation guidance systems: Influences on path efficiency and user reliance. International Journal of Human-Computer Studies, 96, 1–11. https://doi.org/10.1016/j.ijhcs.2016.07.008
  • Burigat, S., Chittaro, L., Parlato, E. (2008, September). Map, diagram, and web page navigation on mobile devices: The effectiveness of zoomable user interfaces with overviews. In Proceedings of the 10th international conference on Human computer interaction with mobile devices and services (pp. 147–156).
  • Carmo, M. B., Afonso, A. P., Melo, M., Rocha, B., & Botan, V. (2020, September). Augmented reality with maps for off-screen POI awareness. In 2020 24th International Conference Information Visualisation (IV) (pp. 454–459). IEEE. https://doi.org/10.1109/IV51561.2020.00079
  • Chen, C.-H., & Li, X. (2020). Spatial knowledge acquisition with mobile maps: Effects of map size on users’ wayfinding performance with interactive interfaces. ISPRS International Journal of Geo-Information, 9(11), 614. https://doi.org/10.3390/ijgi9110614
  • Chen, M. X., & Chen, C. H. (2020, July). A study of size effects of overview interfaces on user performance in virtual environments. In International conference on human-computer interaction. (pp. 302–313). Springer.
  • Chittaro, L. (2006). Visualizing information on mobile devices. Computer Magazine. 39(3), 40–45. https://doi.org/10.1109/MC.2006.109
  • Çöltekin, A., Francelet, R., Richter, K.-F., Thoresen, J., & Fabrikant, S. I. (2018). The effects of visual realism, spatial abilities, and competition on performance in map-based route learning in men. Cartography and Geographic Information Science, 45(4), 339–353. https://doi.org/10.1080/15230406.2017.1344569
  • Dey, S., Karahalios, K., Fu, W. T. (2018, October). Getting there and beyond: Incidental learning of spatial knowledge with turn-by-turn directions and location updates in navigation interfaces. In Proceedings of the symposium on spatial user interaction (pp. 100–110).
  • Dong, W., Wu, Y., Qin, T., Bian, X., Zhao, Y., He, Y., Xu, Y., & Yu, C. (2021). What is the difference between augmented reality and 2D navigation electronic maps in pedestrian wayfinding? Cartography and Geographic Information Science, 48(3), 225–240. https://doi.org/10.1080/15230406.2021.1871646
  • Ekstrom, A. D., Spiers, H. J., Bohbot, V. D., & Rosenbaum, R. S. (2018). Human spatial navigation. Princeton University Press.
  • Farr, A. C., Kleinschmidt, T., Yarlagadda, P., & Mengersen, K. (2012). Wayfinding: A simple concept, a complex process. Transport Reviews, 32(6), 715–743. https://doi.org/10.1080/01441647.2012.712555
  • Friedl, J., Zimmer, B., Perkhofer, L., Zenisek, J., Hofer, P., & Jetter, H.-C. (2021). An empirical study of task-specific limitations of the overview + detail technique for interactive time series analysis. Procedia Computer Science, 180, 628–638. https://doi.org/10.1016/j.procs.2021.01.285
  • Gardony, A. L., Brunyé, T. T., & Taylor, H. A. (2015). Navigational aids and spatial memory impairment: The role of divided attention. Spatial Cognition & Computation, 15(4), 246–284. https://doi.org/10.1080/13875868.2015.1059432
  • Gardony, A. L., Martis, S. B., Taylor, H. A., & Brunyé, T. T. (2021). Interaction strategies for effective augmented reality geo-visualization: Insights from spatial cognition. Human–Computer Interaction, 36(2), 107–149. https://doi.org/10.1080/07370024.2018.1531001
  • Gunalp, P., Moossaian, T., & Hegarty, M. (2019). Spatial perspective taking: Effects of social, directional, and interactive cues. Memory & Cognition, 47(5), 1031–1043. https://doi.org/10.3758/s13421-019-00910-y
  • Gunalp, P. N. (2020). Examining perspective taking and its relation to map use and environment learning. University of California.
  • Han, D.-I., Tom Dieck, M. C., & Jung, T. (2018). User experience model for augmented reality applications in urban heritage tourism. Journal of Heritage Tourism, 13(1), 46–61. https://doi.org/10.1080/1743873X.2016.1251931
  • He, Q., Han, A. T., Churaman, T. A., & Brown, T. I. (2021). The role of working memory capacity in spatial learning depends on spatial information integration difficulty in the environment. Journal of Experimental Psychology, 150(4), 666–685. https://doi.org/10.1037/xge0000972
  • Hegarty, M. (2018). Ability and sex differences in spatial thinking: What does the mental rotation test really measure? Psychonomic bulletin & Review, 25(3), 1212–1219. https://doi.org/10.3758/s13423-017-1347-z
  • Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. J. I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425–447. https://doi.org/10.1016/S0160-2896(02)00116-2
  • Hejtmánek, L., Oravcová, I., Motýl, J., Horáček, J., & Fajnerová, I. (2018). Spatial knowledge impairment after GPS guided navigation: Eye-tracking study in a virtual town. International Journal of Human-Computer Studies, 116, 15–24. https://doi.org/10.1016/j.ijhcs.2018.04.006
  • Hilton, C., Johnson, A., Slattery, T. J., Miellet, S., & Wiener, J. M. (2021). The impact of cognitive aging on route learning rate and the acquisition of landmark knowledge. Cognition, 207, 104524. https://doi.org/10.1016/j.cognition.2020.104524
  • Ishikawa, T. (2019). Satellite navigation and geospatial awareness: Long-term effects of using navigation tools on wayfinding and spatial orientation. The Professional Geographer, 71(2), 197–209. https://doi.org/10.1080/00330124.2018.1479970
  • Kalin, J., & Frith, J. (2016). Wearing the city: Memory p (a) laces, smartphones, and the rhetorical invention of embodied space. Rhetoric Society Quarterly, 46(3), 222–235. https://doi.org/10.1080/02773945.2016.1171692
  • Kamilakis, M., Gavalas, D., & Zaroliagis, C. (2016). June Mobile user experience in augmented reality vs. maps interfaces: A case study in public transportation. In International conference on augmented reality, virtual reality and computer graphics (pp. 388–396). Springer.
  • Keil, J., Edler, D., Kuchinke, L., & Dickmann, F. (2020). Effects of visual map complexity on the attentional processing of landmarks. PLoS One, 15(3), e0229575. https://doi.org/10.1371/journal.pone.0229575
  • Kim, K., & Bock, O. (2021). Acquisition of landmark, route, and survey knowledge in a wayfinding task: In stages or in parallel? Psychological Research, 85(5), 2098–2106. https://doi.org/10.1007/s00426-020-01384-3
  • Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In Spatial cognition (pp. 1–17). Springer.
  • Konishi, K., & Bohbot, V. D. (2013). Spatial navigational strategies correlate with gray matter in the hippocampus of healthy older adults tested in a virtual maze. Frontiers in Aging Neuroscience, 5, 1. https://doi.org/10.3389/fnagi.2013.00001
  • Krukar, J., Anacta, V. J., & Schwering, A. (2020). The effect of orientation instructions on the recall and reuse of route and survey elements in wayfinding descriptions. Journal of Environmental Psychology, 68, 101407. https://doi.org/10.1016/j.jenvp.2020.101407
  • Kuipers, B. (1982). The “map in the head” metaphor. Environment and Behavior, 14(2), 202–220. https://doi.org/10.1177/0013916584142005
  • Kurkovsky, S., Koshy, R., Novak, V., & Szul, P. (2012, June). Current issues in handheld augmented reality. In 2012 International Conference on Communications and Information Technology (ICCIT) (pp. 68–72). IEEE. https://doi.org/10.1109/ICCITechnol.2012.6285844
  • Kuwahara, Y., Tsai, H. Y., Ieiri, Y., & Hishiyama, R. (2019, September). Evaluation of a campus navigation application using an AR character guide. In International conference on collaboration and technology (pp. 242–250). Springer.
  • Li, Q., & Luximon, Y. (2022). Navigating the mobile applications: The influence of interface metaphor and other factors on older adults’ navigation behavior. International Journal of Human–Computer Interaction, 38, 1–17. https://doi.org/10.1080/10447318.2022.2050540
  • Liu, B., Ding, L., & Meng, L. (2021). Spatial knowledge acquisition with virtual semantic landmarks in mixed reality-based indoor navigation. Cartography and Geographic Information Science, 48(4), 305–319. https://doi.org/10.1080/15230406.2021.1908171
  • Liu, J., Singh, A. K., & Lin, C.-T. (2022). Using virtual global landmark to improve incidental spatial learning. Scientific reports, 12(1), 1–14. https://doi.org/10.1038/s41598-022-10855-z
  • Löwen, H., Krukar, J., & Schwering, A. (2019). Spatial learning with orientation maps: The influence of different environmental features on spatial knowledge acquisition. ISPRS International Journal of Geo-Information, 8(3), 149. https://doi.org/10.3390/ijgi8030149
  • Lynch, K. (1960). The image of the city (Vol. 11). MIT Press.
  • Mackett, R. L. (2021). Mental health and wayfinding. Transportation Research Part F, 81, 342–354. https://doi.org/10.1016/j.trf.2021.06.014
  • Mahalil, I., Yusof, A. M., Ibrahim, N., Mahidin, E. M. M., & Rusli, M. E. (2019, November). Virtual reality mini map presentation techniques: Lessons and experience learned. In 2019 IEEE Conference on Graphics and Media (GAME) (pp. 26–31). IEEE. https://doi.org/10.1109/GAME47560.2019.8980759
  • Marquardt, A., Trepkowski, C., Eibich, T. D., Maiero, J., Kruijff, E., & Schöning, J. (2020). Comparing non-visual and visual guidance methods for narrow field of view augmented reality displays. IEEE transactions on Visualization and Computer Graphics, 26(12), 3389–3401.
  • Martins, N. C., Marques, B., Alves, J., Araújo, T., Dias, P., & Santos, B. S. (2022). Augmented reality situated visualization in decision-making. Multimedia Tools and Applications, 81(11), 14749–14772. https://doi.org/10.1007/s11042-021-10971-4
  • Mekni, M., & Lemieux, A. (2014). Augmented reality: Applications, challenges and future trends. In Proceedings of the 13th international conference on applied computer and applied computational science (pp. 205–214).
  • Meneghetti, C., Miola, L., Toffalini, E., Pastore, M., & Pazzaglia, F. (2021). Learning from navigation, and tasks assessing its accuracy: The role of visuospatial abilities and wayfinding inclinations. Journal of Environmental Psychology, 75, 101614. https://doi.org/10.1016/j.jenvp.2021.101614
  • Montello, D. R. (1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments (pp. 143–154). Oxford University Press.
  • Muffato, V., Meneghetti, C., & De Beni, R. (2020). The role of visuo‐spatial abilities in environment learning from maps and navigation over the adult lifespan. British journal of Psychology, 111(1), 70–91. https://doi.org/10.1111/bjop.12384
  • Niedermann, B., & Haunert, J.-H. (2019). Focus + context map labeling with optimized clutter reduction. International Journal of Cartography, 5(2–3), 158–177. https://doi.org/10.1080/23729333.2019.1613072
  • Normand, E., & McGuffin, M. J. (2018, October). Enlarging a smartphone with ar to create a handheld vesad (virtually extended screen-aligned display). In 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 123–133). IEEE. https://doi.org/10.1109/ISMAR.2018.00043
  • Nurminen, A. O., Sirvio, K. M. (2021, September). Bus stop spotting: A field experiment comparing 2D maps, augmented reality and 3D Maps. In Proceedings of the 23rd International Conference on Mobile Human-Computer Interaction (pp. 1–14).
  • Papadopoulos, K., Koustriava, E., & Barouti, M. (2017). Cognitive maps of individuals with blindness for familiar and unfamiliar spaces: Construction through audio-tactile maps and walked experience. Computers in Human Behavior, 75, 376–384. https://doi.org/10.1016/j.chb.2017.04.057
  • Piccardi, L., Palmiero, M., Bocchi, A., Boccia, M., & Guariglia, C. (2019). How does environmental knowledge allow us to come back home? Experimental brain Research, 237(7), 1811–1820. https://doi.org/10.1007/s00221-019-05552-9
  • Qiu, X., Wen, L., Wu, C., Yang, Z., Wang, Q., Li, H., & Wang, D. (2020). Impact of learning methods on spatial knowledge acquisition. Frontiers in Psychology, 11, 1322. https://doi.org/10.3389/fpsyg.2020.01322
  • Rabbaa, J. A., Morris, A., & Somanath, S. (2019). MRsive: An augmented reality tool for enhancing wayfinding and engagement with art in museums. In International conference on human-computer interaction (pp. 535–542). Springer.
  • Rauschnabel, P. A., Felix, R., Hinsch, C., Shahab, H., & Alt, F. (2022). What is XR? Towards a framework for augmented and virtual reality. Computers in Human Behavior, 133, 107289. https://doi.org/10.1016/j.chb.2022.107289
  • Rehman, U., & Cao, S. (2016). Augmented-reality-based indoor navigation: A comparative analysis of handheld devices versus google glass. IEEE Transactions on Human-Machine Systems, 47(1), 140–151. https://doi.org/10.1109/THMS.2016.2620106
  • Rehrl, K., Häusler, E., Leitinger, S., & Bell, D. (2014). Pedestrian navigation with augmented reality, voice and digital map: Final results from an in situ field study assessing performance and user experience. Journal of Location Based Services, 8(2), 75–96. https://doi.org/10.1080/17489725.2014.946975
  • Ruginski, I. T., Creem-Regehr, S. H., Stefanucci, J. K., & Cashdan, E. (2019). GPS use negatively affects environmental learning through spatial transformation abilities. Journal of Environmental Psychology, 64, 12–20. https://doi.org/10.1016/j.jenvp.2019.05.001
  • Satalich, G. A. (1995). Navigation and wayfinding in virtual reality: Finding proper tools and cues to enhance navigation awareness. http://www.hitl.washington.edu/publications/satalich/.
  • Sekhavat, Y. A., & Parsons, J. (2018). The effect of tracking technique on the quality of user experience for augmented reality mobile navigation. Multimedia Tools and Applications, 77(10), 11635–11668. https://doi.org/10.1007/s11042-017-4810-y
  • Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. In Advances in child development and behavior (Vol. 10, pp. 9–55). Elsevier.
  • Singh, A. K., Liu, J., Tirado Cortes, C. A., Lin, C. T. (2021, May). Virtual global landmark: An augmented reality technique to improve spatial navigation learning. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1–6). https://doi.org/10.1145//3411763.3451634
  • Sönmez, B. E., & Önder, D. E. (2019). The influence of GPS-based navigation systems on perception and image formation: A case study in urban environments. Cities, 86, 102–112. https://doi.org/10.1016/j.cities.2018.12.018
  • Sugimoto, M., Kusumi, T., Nagata, N., & Ishikawa, T. (2022). Online mobile map effect: How smartphone map use impairs spatial memory. Spatial Cognition & Computation, 22(1–2), 161–183. https://doi.org/10.1080/13875868.2021.1969401
  • Tanabe, A., & Yoshioka, Y. (2019, July). Gazing pattern while using AR route-navigation on smartphone. In International conference on applied human factors and ergonomics (pp. 325–331). Springer.
  • Tang, L., & Zhou, J. (2020, July). Usability assessment of augmented reality-based pedestrian navigation aid. In International conference on human-computer interaction (pp. 581–591). Springer.
  • Török, Z. G., Török, Á. (2019, October). Remember the north: Reference frames and spatial cognition at different scale. In 2019 10th IEEE international conference on cognitive infocommunications (CogInfoCom) (pp. 21–26). IEEE.
  • van der Ham, I. J., & Claessen, M. H. (2020). How age relates to spatial navigation performance: Functional and methodological considerations. Ageing research Reviews, 58, 101020. https://doi.org/10.1016/j.arr.2020.101020
  • Wang, C., Chen, Y., Zheng, S., & Liao, H. (2018). Gender and age differences in using indoor maps for wayfinding in real environments. ISPRS International Journal of Geo-Information, 8(1), 11. https://doi.org/10.3390/ijgi8010011
  • Wang, J., & Ishikawa, T. (2018, September). A system of automatic generation of landmark-based pedestrian navigation instructions and its effectiveness for wayfinding. In German conference on spatial cognition (pp. 326–340). Springer.
  • Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2014). Variations in cognitive maps: Understanding individual differences in navigation. Journal of Experimental Psychology, 40(3), 669–682. https://doi.org/10.1037/a0035261
  • Wen, J., Deneka, A., Helton, W. S., Dünser, A., & Billinghurst, M. (2014, June). Fighting technology dumb down: Our cognitive capacity for effortful AR navigation tools. In International conference on human-computer interaction (pp. 525–536). Springer.
  • Wickens, C. D., Helton, W. S., Hollands, J. G., & Banbury, S. (2021). Engineering psychology and human performance. Routledge.
  • Wickens, C. D., Liang, C. C., Prevett, T., Olmos, O. (1994, October). Egocentric and exocentric displays for terminal area navigation. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 38, No. 1, pp. 16–20). SAGE Publications. https://doi.org/10.1177/154193129403800105
  • Wiener, J. M., Kmecova, H., & de Condappa, O. (2012). Route repetition and route retracing: Effects of cognitive aging. Frontiers in Aging Neuroscience, 4, 7. https://doi.org/10.3389/fnagi.2012.00007
  • Wunderlich, A., & Gramann, K. (2021). Landmark-based navigation instructions improve incidental spatial knowledge acquisition in real-world environments. Journal of Environmental Psychology, 77, 101677. https://doi.org/10.1016/j.jenvp.2021.101677
  • Yang, F., Fang, Z., & Guan, F. (2020, November). What do we actually need during self-localization in an augmented environment? In International symposium on web and wireless geographical information systems (pp. 24–32). Springer.
  • Yang, Y., Cordeil, M., Beyer, J., Dwyer, T., Marriott, K., & Pfister, H. (2021). Embodied navigation in immersive abstract data visualization: Is overview + detail or zooming better for 3D scatterplots? IEEE transactions on Visualization and Computer Graphics, 27(2), 1214–1224. https://doi.org/10.1109/TVCG.2020.3030427
  • Yesiltepe, D., Conroy Dalton, R., & Ozbil Torun, A. (2021). Landmarks in wayfinding: A review of the existing literature. Cognitive processing, 22(3), 369–410. https://doi.org/10.1007/s10339-021-01012-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.