651
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

The Effect of Audiovisual Spatial Design on User Experience of Bare-Hand Interaction in VR

, , , , &
Pages 2796-2807 | Received 25 Jun 2022, Accepted 30 Nov 2022, Published online: 07 Feb 2023

References

  • Alkemade, R., Verbeek, F. J., & Lukosch, S. G. (2017). On the efficiency of a VR hand gesture-based interface for 3D object manipulations in conceptual design. International Journal of Human-Computer Interaction, 33(11), 882–901. https://doi.org/10.1080/10447318.2017.1296074
  • Andre, C. R., Corteel, E., Embrechts, J.-J., Verly, J. G., & Katz, B. F. G. (2014). Subjective evaluation of the audiovisual spatial congruence in the case of stereoscopic-3D video and Wave Field Synthesis. International Journal of Human-Computer Studies, 72(1), 23–32. https://doi.org/10.1016/j.ijhcs.2013.09.004
  • Argelaguet, F., Hoyet, L., Trico, M., Lecuyer, A. (2016). The role of interaction in virtual embodiment: Effects of the virtual hand representation. 2016 IEEE Virtual Reality (VR), 3–10. https://doi.org/10.1109/VR.2016.7504682
  • Bavelier, D., Dye, M. W. G., & Hauser, P. C. (2006). Do deaf individuals see better? Trends in Cognitive Sciences, 10(11), 512–518. https://doi.org/10.1016/j.tics.2006.09.006
  • Chen, Q. (2012). Cognitive neural mechanisms of three-dimensional spatial attention. 2012 Abstracts of the 15th National Academic Congress of Psychology, 56. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CPFD&dbname=CPFD0914&filename=ZGXG201211001012&v=
  • Cummings, J. J., & Bailenson, J. N. (2016). How immersive is enough? A meta-analysis of the effect of immersive technology on user presence. Media Psychology, 19(2), 272–309. https://doi.org/10.1080/15213269.2015.1015740
  • Fan, L., Wang, S.-Y., Wang, Y.-Q., Zou, X., & Dou, J.-S. (2011). A new species of the genus Phyllostachys (Coleoptera, Staphylinidae) from China. Ergonomics and cognitive load study of fNIRS-based AR-guided puncture training system. Packaging Engineering, 42(20), 146–151. https://doi.org/10.19554/j.cnki.1001-3563.2021.20.014
  • Fechter, M., Schleich, B., & Wartzack, S. (2022). Comparative evaluation of WIMP and immersive natural finger interaction: A user study on CAD assembly modeling. Virtual Reality, 26(1), 143–158. https://doi.org/10/gpqb99
  • Finnegan, D. J., O’Neill, E., Proulx, M. J. (2016). Compensating for distance compression in audiovisual virtual environments using incongruence. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 200–212. https://doi.org/10/gppv7s
  • Fu, Q., Lv, J., Zhao, Z., & Yue, D. (2020). Research on optimization method of VR Task Scenario resources driven by user cognitive needs. Information, 11(2), 64. https://doi.org/10/gppskh
  • Geiger, A., Bewersdorf, I., Brandenburg, E., & Stark, R. (2018). Visual feedback for grasping in virtual reality environments for an interface to instruct digital human models. In T. Ahram & C. Falcão (Eds.), Advances in usability and user experience (Vol. 607, pp. 228–239). Springer International Publishing. https://doi.org/10.1007/978-3-319-60492-3_22
  • Godfroy, M., Roumes, C., & Dauchy, P. (2003). Spatial variations of visual – Auditory fusion areas. Perception, 32(10), 1233–1245. https://doi.org/10.1068/p3344
  • Herff, C., Heger, D., Fortmann, O., Hennrich, J., Putze, F., & Schultz, T. (2013). Mental workload during n-back task – Quantified in the prefrontal cortex using fNIRS. Frontiers in Human Neuroscience, 7(2013), 935. https://doi.org/10.3389/fnhum.2013.00935
  • Izzetoglu, K., Bunce, S., Izzetoglu, M., Onaral, B., Pourrezaei, K. (2003). FNIR spectroscopy as a measure of cognitive task load. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439), 3431–3434. https://doi.org/10/cx2c95
  • Jeong, K., Lee, J., & Kim, J. (2018). A study on new virtual reality system in Maze Terrain. International Journal of Human-Computer Interaction, 34(2), 129–145. https://doi.org/10.1080/10447318.2017.1331535
  • Khademi, M., Mousavi Hondori, H., McKenzie, A., Dodakian, L., Lopes, C. V., & Cramer, S. C. (2014). Free-hand interaction with leap motion controller for stroke rehabilitation. CHI ’14 Extended Abstracts on Human Factors in Computing Systems, 1663–1668. https://doi.org/10.1145/2559206.2581203
  • Kim, H., & Choi, Y. (2019). Performance comparison of user interface devices for controlling mining software in virtual reality environments. Applied Sciences, 9(13), 2584. https://doi.org/10.3390/app9132584
  • Kovács, E., & Antal, M. (2012). Challenges of virtual environment in education. EDULEARN12 Proceedings, 2109–2117.
  • Lewald, J., Ehrenstein, W. H., & Guski, R. (2001). Spatio-temporal constraints for auditory–visual integration. Behavioural brain Research, 121(1–2), 69–79. https://doi.org/10.1016/S0166-4328(00)00386-7
  • Lewis, J. R. (2015). Introduction to the special issue on usability and user experience: Methodological evolution. International Journal of Human-Computer Interaction, 31(9), 555–556. https://doi.org/10.1080/10447318.2015.1065689
  • Li, Q., Feng, J., Guo, J., Wang, Z., Li, P., Liu, H., & Fan, Z. (2020). Effects of the multisensory rehabilitation product for home-based hand training after stroke on cortical activation by using NIRS methods. Neuroscience Letters, 717(2020), 134682. https://doi.org/10.1016/j.neulet.2019.134682
  • Lin, J., Yang, W., Gao, X., & Liao, M. (2015). Learning to assemble building blocks with a leap motion controller. In F. W. B. Li, R. Klamma, M. Laanpere, J. Zhang, B. F. Manjón, & R. W. H. Lau (Eds.), Advances in Web-Based Learning—ICWL 2015. (Vol. 9412, pp. 258–263). Springer International Publishing. https://doi.org/10.1007/978-3-319-25515-6_25
  • Liu, D., & Rau, P.-L P. (2020). Spatially incongruent sounds affect visual localization in virtual environments. Attention, Perception & Psychophysics, 82(4), 2067–2075. https://doi.org/10/gppv8j
  • Lv, Z., Zhou, Y., Liu, H., Shu, X., Zhang, N. (2020). A TCN-based primary ambient extraction in generating ambisonics audio from Panorama Video. 2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 1–6. https://doi.org/10/gpp3jn
  • Masurovsky, A., Chojecki, P., Runde, D., Lafci, M., Przewozny, D., & Gaebler, M. (2020). Controller-free hand tracking for grab-and-place tasks in immersive virtual reality: Design elements and their empirical study. Multimodal Technologies and Interaction, 4(4), 91. https://doi.org/10/gppn28
  • McKendrick, R., Parasuraman, R., Murtza, R., Formwalt, A., Baccus, W., Paczynski, M., & Ayaz, H. (2016). Into the Wild: Neuroergonomic differentiation of hand-held and augmented reality wearable displays during outdoor navigation with functional near infrared spectroscopy. Frontiers in Human Neuroscience, 10(2016), 216. https://doi.org/10.3389/fnhum.2016.00216
  • McMahan, R. P., Lai, C., & Pal, S. K. (2016). Interaction fidelity: The Uncanny valley of virtual reality interactions. In S. Lackey & R. Shumaker (Eds.), Virtual, augmented and mixed reality (Vol. 9740, pp. 59–70). Springer International Publishing. https://doi.org/10.1007/978-3-319-39907-2_6
  • Sagnier, C., Loup-Escande, E., Lourdeaux, D., Thouvenin, I., & Vallery, G. (2020). User acceptance of virtual reality: An extended technology acceptance model. International Journal of Human-Computer Interaction, 36(11), 993–1007. https://doi.org/10.1080/10447318.2019.1708612
  • Sato, M., Sato, I., Kato, S., & Kaufman, A. E. (2019). Examination of perception with auditory stimuli when grasping a virtual soft object with a bare hand. In P. Y. Lau, K. Hayase, Q. Kemao, W.-N. Lie, Y.-L. Lee, S. Srisuk, & L. Yu (Eds.), International Workshop on Advanced Image Technology (IWAIT) 2019 (p. 17). SPIE. https://doi.org/10.1117/12.2520986
  • Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Pavia, J. M., Wolf, U., & Wolf, M. (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology 22.
  • Shattuck, D. W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K. L., Poldrack, R. A., Bilder, R. M., & Toga, A. W. (2008). Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage, 39(3), 1064–1080. https://doi.org/10.1016/j.neuroimage.2007.09.031
  • Simon, H. A. (1981). Information-processing models of cognition. Journal of the American Society for Information Science, 32(5), 364–377. https://doi.org/10.1002/asi.4630320517
  • Spence, C. (2013). Just how important is spatial coincidence to multisensory integration? Evaluating the spatial rule: Spatial coincidence and multisensory integration. Annals of the New York Academy of Sciences, 1296(1), 31–49. https://doi.org/10.1111/nyas.12121
  • Sreng, J., Lecuyer, A., Megard, C., & Andriot, C. (2006). Using visual cues of contact to improve interactive manipulation of virtual objects in industrial assembly/maintenance simulations. IEEE transactions on Visualization and Computer Graphics, 12(5), 1013–1020. https://doi.org/10/c52kgw
  • Sun, C.-Y., & Liu, D.-Z. (2013). Comparison of subjective rating scales for cognitive load. Psychological Science, 36(1), 194–201. https://doi.org/10.16719/j.cnki.1671-6981.2013.01.014
  • Tsang, P. S., & Velazquez, V. L. (1996). Diagnosticity and multidimensional subjective workload ratings. Ergonomics, 39(3), 358–381. https://doi.org/10.1080/00140139608964470
  • Turner, A., Berry, J., & Holliman, N. (2011). Can the perception of depth in stereoscopic images be influenced by 3D sound? (A. J. Woods, N. S. Holliman, & N. A. Dodgson, Eds., Proceedings Volume 7863, Stereoscopic Displays and Applications XXII, p. 786307). https://doi.org/10.1117/12.871960
  • Uga, M., Dan, I., Sano, T., Dan, H., & Watanabe, E. (2014). Optimizing the general linear model for functional near-infrared spectroscopy: An adaptive hemodynamic response function approach. Neurophotonics, 1(1), 015004. https://doi.org/10.1117/1.NPh.1.1.015004
  • Van der Stoep, N., Nijboer, T. C. W., & Van der Stigchel, S. (2013). Exogenous orienting of crossmodal attention in 3-D space: Support for a depth-aware crossmodal attentional system. Psychonomic Bulletin & Review 21(3), 708–714. https://doi.org/10.3758/s13423-013-0532-y
  • Vosinakis, S., & Koutsabasis, P. (2018). Evaluation of visual feedback techniques for virtual grasping with bare hands using Leap Motion and Oculus Rift. Virtual Reality, 22(1), 47–62. https://doi.org/10/gppsjp
  • Vosinakis, S., Koutsabasis, P., Makris, D., Sagia, E. (2016). A kinesthetic approach to digital heritage using leap motion: The cycladic sculpture application. 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES), 1–8. https://doi.org/10.1109/VS-GAMES.2016.7590334
  • Wallace, M. T., Roberson, G. E., Hairston, W. D., Stein, B. E., Vaughan, J. W., & Schirillo, J. A. (2004). Unifying multisensory signals across time and space. Experimental brain Research, 158(2), 252–258. https://doi.org/10.1007/s00221-004-1899-9
  • Wickens, C. D. (2008). Multiple resources and mental workload. Human Factors: The Journal of the Human Factors and Ergonomics Society, 50(3), 449–455. https://doi.org/10.1518/001872008X288394
  • Wozniak, P., Vauderwange, O., Mandal, A., Javahiraly, N., & Curticapean, D. (2016). Possible applications of the LEAP Motion controller for more interactive simulated experiments in Augmented or Virtual Reality. In G. G. Gregory (Ed.), Optics education and outreach Iv (Vol. 9946, p. 99460). Spie-Int Soc Optical Engineering. https://doi.org/10/gppvmz
  • Yu, D., Wang, S., Song, F., Liu, Y., Zhang, S., Wang, Y., Xie, X., & Zhang, Z. (2022). Research on user experience of the video game difficulty based on flow theory and fNIRS. Behaviour & Information Technology, 1–17. https://doi.org/10.1080/0144929X.2022.2043442
  • Zhao, M. Y., Ong, S. K., & Nee, A. Y. C. (2016). An augmented reality-assisted therapeutic healthcare exercise system based on bare-hand interaction. International Journal of Human-Computer Interaction, 32(9), 708–721. https://doi.org/10.1080/10447318.2016.1191263
  • Zhou, X., Qin, H., Xiao, W., Jia, L., & Xue, C. (2020). A comparative usability study of bare hand three-dimensional object selection techniques in virtual environment. Symmetry, 12(10), 1723. https://doi.org/10.3390/sym12101723

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.