489
Views
2
CrossRef citations to date
0
Altmetric
Survey Article

A Case for Personalized Non-Player Character Companion Design

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3051-3070 | Received 12 Dec 2022, Accepted 13 Feb 2023, Published online: 06 Mar 2023

References

  • 2K Games. (2013). BioShock Infinite.
  • Andrade, G., Ramalho, G., Gomes, A. S., Corruble, V. (2005). Challenge-sensitive game balancing: An evaluation of user satisfaction. In In proceedings of the 4rd Brazilian workshop on computer games and digital entertainment (wjogos05 (pp. 66–76). AAAI Press.
  • Athavipach, C., Pan-Ngum, S., & Israsena, P. (2018). Development of low-cost in-the-ear eeg prototype. In 2018 15th international joint conference on computer science and software engineering (jcsse) (pp. 1–6). https://doi.org/10.1109/JCSSE.2018.8457324
  • Bakkes, S., Tan, C. T., Pisan, Y. (2012). Personalised gaming: A motivation and overview of literature. In Proceedings of the 8th Australasian conference on interactive entertainment playing the system – IE ’12 (pp. 1–10). ACM Press. http://dl.acm.org/citation.cfm?doid=2336727.2336731
  • Barrios, L., Oldrati, P., Santini, S., & Lutterotti, A. (2019). Evaluating the accuracy of heart rate sensors based on photoplethysmography for in-the-wild analysis. In Proceedings of the 13th eai international conference on pervasive computing technologies for healthcare (pp. 251–261). https://doi.org/10.1145/3329189.3329215
  • Bethesda Softworks. (2011). The elder scrolls v: Skyrim.
  • Bethesda Softworks. (2012). Skyrim creation kit.
  • Bethesda Softworks. (2015). Fallout 4.
  • Bioware. (2002). Neverwinter nights.
  • Bontchev, B. (2016). Adaptation in affective video games. Cybernetics and Information Technologies, 16(3), 3–34. https://doi.org/10.1515/cait-2016-0032
  • Bouquet, E., Mäkelä, V., & Schmidt, A. (2021). Exploring the design of companions in video games. Academic Mindtrek 2021 (Mindtrek ’21), 145–153. https://doi.org/10.1145/3464327.3464371
  • Budakova, D., Petrova-Dimitrova, V., Vasilev, V., Dakovski, L. (2022). Modelling of more realistic intelligent virtual agent in virtual and mixed reality. In Aip conference proceedings (Vol. 2449, p. 040011).
  • Burgess, J., & Jones, C. (2020). “I Harbour Strong Feelings for Tali Despite Her Being a Fictional Character”: Investigating Videogame Players’ Emotional Attachments to NonPlayer Characters. Game Studies, 20(1).
  • Chang, Z., Bai, H., Zhang, L., Gupta, K., He, W., & Billinghurst, M. (2022). The impact of virtual agents’ multimodal communication on brain activity and cognitive load in virtual reality. Frontiers in Virtual Reality, 3, 179. https://doi.org/10.3389/frvir.2022.995090
  • Chowanda, A., Blanchfield, P., Flintham, M., Valstar, M. (2014). Erisa: Building emotionally realistic social game-agents companions. In International conference on intelligent virtual agents (pp. 134–143).
  • Chowanda, A., Blanchfield, P., Flintham, M., Valstar, M. (2016). Computational models of emotion, personality, and social relationships for interactions in games. In Proceedings of the 2016 international conference on autonomous agents & multiagent systems (pp. 1343–1344).
  • Chowanda, A., Flintham, M., Blanchfield, P., Valstar, M. (2016). Playing with social and emotional game companions. In International conference on intelligent virtual agents (pp. 85–95).
  • Damrongwatanapokin, T., Mikami, K. (2018). Fatigue prediction and intervention for continuous play in video games. In 2018 international conference on cyberworlds (cw) (pp. 451–453).
  • Daviault, C. (2012). Does game playing experience have an impact on the player-pnpc relationship? Bulletin of Science, Technology & Society, 32(6), 441–446. https://doi.org/10.1177/0270467612469075
  • Dekker, A., & Champion, E. (2007). Please biofeed the zombies: Enhancing the gameplay and display of a horror game using biofeedback. In DiGRA ’07. Proceedings of the 2007 DiGRA International Conference: Situated Play, 9.
  • Emmerich, K., Ring, P., Masuch, M. (2018). I’m glad you are on my side: How to design compelling game companions. In Proceedings of the 2018 annual symposium on computerhuman interaction in play (pp. 141–152). Association for Computing Machinery. https://doi.org/10.1145/3242671.3242709
  • Ewing, K. C., Fairclough, S. H., & Gilleade, K. (2016). Evaluation of an adaptive game that uses EEG measures validated during the design process as inputs to a biocybernetic loop. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00223
  • Fagerholt, E., & Lorentzon, M. (2009). Beyond the hud-user interfaces for increased player immersion in fps games (Unpublished master’s thesis). Chalmers University Of Technology.
  • Fraser, J., Papaioannou, I., Lemon, O. (2018). Spoken conversational AI in video games: Emotional dialogue management increases user engagement. In Proceedings of the 18th international conference on intelligent virtual agents (pp. 179–184). ACM. https://doi.org/10.1145/3267851.3267896
  • Frommel, J., Phillips, C., Mandryk, R. L. (2021). Gathering self-report data in games through NPC dialogues: Effects on data quality, data quantity, player experience, and information intimacy. In Proceedings of the 2021 CHI conference on human factors in computing systems (pp. 1–12). ACM. https://doi.org/10.1145/3411764.3445411
  • FromSoftware. (2011). Dark Souls. FromSoftware.
  • Gabele, M., Thoms, A., Alpers, J., Hußlein, S., & Hansen, C. (2019). Non-player character as a companion in cognitive rehabilitation for adults – Characteristics and representation. GamiFIN Conference, 12, 130–141.
  • Graf, L., Abramowski, S., Baßfeld, M., Gerschermann, K., Grießhammer, M., Scholemann, L., Masuch, M. (2022). Emotional support companions in virtual reality. In 2022 iEEE conference on virtual reality and 3d user interfaces abstracts and workshops (Vrw) (pp. 634–635).
  • Hastings, E. J., Guha, R. K., & Stanley, K. O. (2009). Automatic content generation in the galactic arms race video game. IEEE Transactions on Computational Intelligence and AI in Games, 1(4), 245–263. https://doi.org/10.1109/TCIAIG.2009.2038365
  • Hjelm, S. I. (2003). Research + design: The making of Brainball. Interactions, 10(1), 26–34.
  • Hollingdale, J., & Greitemeyer, T. (2013). The changing face of aggression: The effect of personalized avatars in a violent video game on levels of aggressive behavior. Journal of Applied Social Psychology, 43(9), 1862–1868. https://doi.org/10.1111/jasp.12148
  • Houzangbe, S., Christmann, O., Gorisse, G., Richir, S. (2018). Fear as a biofeedback game mechanic in virtual reality: Effects on engagement and perceived usability. In Proceedings of the 13th international conference on the foundations of digital games (pp. 1–6).
  • Hunicke, R. (2005). The case for dynamic difficulty adjustment in games. In Proceedings of the 2005 ACM SIGCHI international conference on advances in computer entertainment technology (pp. 429–433).
  • Jalbert, J., & Rank, S. (2016). Exit 53: Physiological data for improving non-player character interaction. In F. Nack & A. S. Gordon (Eds.), Interactive storytelling (pp. 25–36). Springer International Publishing.
  • Jin, S.-A A. (2012). “toward integrative models of flow”: Effects of performance, skill, challenge, playfulness, and presence on flow in video games. Journal of Broadcasting & Electronic Media, 56(2), 169–186. https://doi.org/10.1080/08838151.2012.678516
  • Karpinskyj, S., Zambetta, F., & Cavedon, L. (2014). Video game personalisation techniques: A comprehensive survey. Entertainment Computing, 5(4), 211–218. https://doi.org/10.1016/j.entcom.2014.09.002
  • Kerous, B., Skola, F., & Liarokapis, F. (2018). Eeg-based bci and video games: A progress report. Virtual Reality, 22(2), 119–135. https://doi.org/10.1007/s10055-017-0328-x
  • Laird, J., & VanLent, M. (2001). Human-level ai’s killer application: Interactive computer games. AI Magazine, 22(2), 15–15. https://doi.org/10.1609/aimag.v22i2.1558
  • Lebedeva, E., Brown, J. A. (2020). Companion ai for starbound game using utility theory. In 2020 international conference nonlinearity, information and robotics (nir) (pp. 1–5).
  • Lim, M. Y., Dias, J., Aylett, R., & Paiva, A. (2012). Creating adaptive affective autonomous npcs. Autonomous Agents and Multi-Agent Systems, 24(2), 287–311. https://doi.org/10.1007/s10458-010-9161-2
  • Machado, M. C., Fantini, E. P. C., Chaimowicz, L. (2011). Player modeling: Towards a common taxonomy. In 2011 16th international conference on computer games (cgames) (pp. 50–57).
  • Muis, A. N., Prihatmanto, A. S., Gitarana, G. R. E., Fithratu, C. (2020). Adaptive companion-mediated behavior changes on arithmatopia games user: Case study of NPC design. In 2020 6th international conference on interactive digital media (ICIDM) (pp. 1–6). IEEE. https://ieeexplore.ieee.org/document/9339670/
  • Nacke, L. E., Kalyn, M., Lough, C., Mandryk, R. L. (2011). Biofeedback game design: Using direct and indirect physiological control to enhance game interaction. In Proceedings of the 2011 annual conference on human factors in computing systems – CHI ’11 (p. 103). ACM Press. http://dl.acm.org/citation.cfm?doid=1978942.1978958
  • Nakagawa, Y., Yamamoto, K., Thawonmas, R. (2014). Online adjustment of the ai’s strength in a fighting game using the k-nearest neighbor algorithm and a game simulator. In 2014 iEEE 3rd global conference on consumer electronics (gcce) (pp. 494–495).
  • Nakamura, J., & Csikszentmihalyi, M. (2009). Flow theory and research. In S. J. Lopez & C. R. Snyder (Eds.), The Oxford Handbook of Positive Psychology (2nd ed.) (pp. 195–206). Oxford Academic. https://doi.org/10.1093/oxfordhb/9780195187243.013.0018
  • Nalepa, G. J., Kutt, K., Giżycka, B., Jemio lo, P., & Bobek, S. (2019). Analysis and use of the emotional context with wearable devices for games and intelligent assistants. Sensors, 19(11), 2509. https://doi.org/10.3390/s19112509
  • Naughty Dog. (1997). Crash Bandicoot 2: Cortex Strikes Back. Naughty Dog.
  • Newzoo. (2022). Newzoo global games market report 2022 free version. Retrieved from https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2022-free-version
  • Ninaus, M., Tsarava, K., Moeller, K. (2019). A pilot study on the feasibility of dynamic difficulty adjustment in game-based learning using heart-rate. In International conference on games and learning alliance (pp. 117–128).
  • Nintendo. (1985). Super Mario Bros.
  • Nintendo. (1996). Mario Kart 64.
  • Nogueira, P. A., Torres, V., Rodrigues, R., Oliveira, E., & Nacke, L. E. (2016). Vanishing scares: Biofeedback modulation of affective player experiences in a procedural horror game. Journal on Multimodal User Interfaces, 10(1), 31–62. https://doi.org/10.1007/s12193-015-0208-1
  • Norman, D. (2013). The design of everyday things: Revised and expanded edition. Basic books.
  • Olesen, J. K., Yannakakis, G. N., Hallam, J. (2008). Real-time challenge balance in an rts game using rtneat. In 2008 IEEE symposium on computational intelligence and games (pp. 87–94).
  • Papavasileiou, E., Cornelis, J., & Jansen, B. (2021). A systematic literature review of the successors of “neuroevolution of augmenting topologies. Evolutionary Computation, 29(1), 1–73. https://doi.org/10.1162/evco_a_00282
  • Paraschos, P. D., & Koulouriotis, D. E. (2022). Game difficulty adaptation and experience personalization: A literature review. International Journal of Human–Computer Interaction, 39(1), 1–22. https://doi.org/10.1080/10447318.2021.2020008
  • Pfau, J., Smeddinck, J. D., Malaka, R. (2020). The case for usable ai: What industry professionals make of academic ai in video games. In Extended abstracts of the 2020 annual symposium on computer-human interaction in play (pp. 330–334).
  • Pinchbeck, D. (2009). An analysis of persistent non-player characters in the first-person gaming genre 1998–2007: A case for the fusion of mechanics and diegetics. Eludamos: Journal of Computer Game Cultures, 3(2), 20. https://doi.org/10.7557/23.6009
  • Preuss, M., & Risi, S. (2020). A games industry perspective on recent game ai developments. KI-KüNstliche Intelligenz, 34(1), 81–83. https://doi.org/10.1007/s13218-020-00643-0
  • Putze, F., Hild, J., Kärgel, R., Herff, C., Redmann, A., Beyerer, J., Schultz, T. (2013). Locating user attention using eye tracking and eeg for spatio-temporal event selection. In Proceedings of the 2013 international conference on intelligent user interfaces (pp. 129–136).
  • Quantic Dream. (2018). Detroit: Become human. Quantic Dream.
  • Riedl, M. O. (2010). Scalable personalization of interactive experiences through creative automation. Computers in Entertainment (CIE), 8(4), 1–3. https://doi.org/10.1145/1921141.1921146
  • Robinson, R., Wiley, K., Rezaeivahdati, A., Klarkowski, M., Mandryk, R. L. (2020). “let’s get physiological, physiological!” a systematic review of affective gaming. In Proceedings of the annual symposium on computer-human interaction in play (pp. 132–147).
  • Rogers, K., Aufheimer, M., Weber, M., & Nacke, L. E. (2018). Exploring the role of non-player characters and gender in player identification. In Proceedings of the 2018 annual symposium on computer-human interaction in play companion extended abstracts (p. 271–283). Association for Computing Machinery. https://doi.org/10.1145/3270316.3273041
  • Romine, W. L., Schroeder, N. L., Graft, J., Yang, F., Sadeghi, R., Zabihimayvan, M., Kadariya, D., & Banerjee, T. (2020). Using machine learning to train a wearable device for measuring students’ cognitive load during problem-solving activities based on electrodermal activity, body temperature, and heart rate: Development of a cognitive load tracker for both personal and classroom use. Sensors, 20(17), 4833. https://doi.org/10.3390/s20174833
  • Schwark, J. D. (2015). Toward a taxonomy of affective computing. International Journal of Human–Computer Interaction, 31(11), 761–768. https://doi.org/10.1080/10447318.2015.1064638
  • Scriven, P. (2022). “you’re the lucky one, dani”: Npc empathy and meaningful play in farcry 6.
  • Setiono, D., Saputra, D., Putra, K., Moniaga, J. V., & Chowanda, A. (2021). Enhancing player experience in game with affective computing. Procedia Computer Science, 179, 781–788. https://linkinghub.elsevier.com/retrieve/pii/S1877050921000843
  • Shao, K., Tang, Z., Zhu, Y., Li, N., & Zhao, D. (2019). A survey of deep reinforcement learning in video games. arXiv, preprint arXiv:1912.10944
  • Sharek, D., & Wiebe, E. (2014). Measuring video game engagement through the cognitive and affective dimensions. Simulation & Gaming, 45(4–5), 569–592. https://doi.org/10.1177/1046878114554176
  • Sharifi, A., Zhao, R., Szafron, D. (2010). Learning companion behaviors using reinforcement learning in games. In Proceedings of the AAAI conference on artificial intelligence and interactive digital entertainment (Vol. 5).
  • Shaw, A. (2010). Identity, identification, and media representation in video game play: An audience reception study (Unpublished doctoral dissertation). University of Pennsylvania.
  • Shaw, A. (2012). Do you identify as a gamer? gender, race, sexuality, and gamer identity. New Media & Society, 14(1), 28–44. https://doi.org/10.1177/1461444811410394
  • Silva, M. P., do Nascimento Silva, V., Chaimowicz, L. (2015). Dynamic difficulty adjustment through an adaptive ai. In 2015 14th Brazilian symposium on computer games and digital entertainment (sbgames) (pp. 173–182).
  • Soares, E. S., Bulitko, V. (2019). Deep variational autoencoders for npc behaviour classification. In 2019 Ieee Conference on Games (Cog) (pp. 1–4).
  • Soule, T., Heck, S., Haynes, T. E., Wood, N., & Robison, B. D. (2017). Darwin’s demons: Does evolution improve the game?. In G. Squillero & K. Sim (Eds.), Applications of evolutionary computation. (pp. 435–451). Springer International Publishing.
  • Streicher, A., & Smeddinck, J. D. (2016). Personalized and adaptive serious games. In R. Dörner, S. Göbel, M. Kickmeier-Rust, M. Masuch, & K. Zweig (Eds.), Entertainment Computing and Serious Games. Lecture Notes in Computer Science (Vol. 9970, pp. 332–377). Springer. https://doi.org/10.1007/978-3-319-46152-6_14
  • Takahashi, T., Tanaka, K., Oka, N. (2018). Adaptive mixed-initiative dialog motivates a game player to talk with an npc. In Proceedings of the 6th international conference on human-agent interaction (pp. 153–160).
  • Terracciano, A., McCrae, R. R., & Costa, P. T. (2010). Intra-individual change in personality stability and age. Journal of Research in Personality, 44(1), 31–37. https://www.sciencedirect.com/science/article/pii/S0092656609002025
  • Togelius, J., Champandard, A. J., Lanzi, P. L., Mateas, M., Paiva, A., Preuss, M., & Stanley, K. O. (2013). Procedural Content Generation: Goals, Challenges and Actionable Steps. In S. M. Lucas, M. Mateas, M. Preuss, P. Spronck, & J. Togelius (Eds.), Artificial and computational intelligence in games (Vol. 6, pp. 61–75). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. http://drops.dagstuhl.de/opus/volltexte/2013/4336
  • Tremblay, J., & Verbrugge, C. (2013). Adaptive companions in FPS games. Foundations of Digital Games, 8.
  • Valve. (2009). Left 4 Dead 2.
  • Vanneste, P., Raes, A., Morton, J., Bombeke, K., Van Acker, B. B., Larmuseau, C., Depaepe, F., & Van den Noortgate, W. (2021). Towards measuring cognitive load through multimodal physiological data. Cognition. Technology & Work, 23(3), 567–585.
  • Wäppling, A., Walchshofer, L., & Lewin, R. (2022). What makes a cozy game?: A study of three games considered cozy. Uppsala University.
  • Warpefelt, H. (2016). The non-player character: Exploring the believability of NPC presentation and behavior. Department of Computer and Systems Sciences, Stockholm University. http://urn.kb.se/resolve?urn=urn: nbn:se:su:diva-128079
  • Warpefelt, H., & Strååt, B. (2013). Anti-heuristics for maintaining immersion through believable non-player characters. Foundations of Digital Games, 2, 455–456.
  • Warpefelt, H., Verhagen, H. (2015). Towards an updated typology of non-player character roles. In Proceedings of the international conference on game and entertainment technologies (pp. 1–9).
  • Williams, D., Yee, N., & Caplan, S. E. (2008). Who plays, how much, and why? debunking the stereotypical gamer profile. Journal of Computer-Mediated Communication, 13(4), 993–1018. https://doi.org/10.1111/j.1083-6101.2008.00428.x
  • Witte, T. E., Haase, H., Schwarz, J. (2021). Measuring cognitive load for adaptive instructional systems by using a pressure sensitive computer mouse. In International conference on human-computer interaction (pp. 209–218).
  • Wittmann, M., & Morschheuser, B. (2022). What do games teach us about designing effective human-ai cooperation?-a systematic literature review and thematic synthesis on design patterns of non. Player Characters, 95–104.
  • Yannakakis, G. N., Martinez, H. P., & Garbarino, M. (2016). Psychophysiology in games. In K. Karpouzis & G. N. Yannakakis (Eds.), Emotion in games: Theory and praxis (pp. 119–137). Springer International Publishing.
  • Yannakakis, G. N., & Togelius, J. (2011). Experience-driven procedural content generation. IEEE Transactions on Affective Computing, 2(3), 147–161. https://doi.org/10.1109/T-AFFC.2011.6
  • Zhadan, A. (2018). Artificial intelligence adaptation in video games (Unpublished master’s thesis). Linnaeus University, Department of computer science and media technology (CM).
  • Zhu, J., Ontañón, S. (2020). Player-centered ai for automatic game personalization: Open problems. In International conference on the foundations of digital games (pp. 1–8).
  • Zohaib, M. (2018). Dynamic difficulty adjustment (dda) in computer games: A review. Advances in Human-Computer Interaction, 2018. https://doi.org/10.1155/2018/5681652

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.