166
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Effects of Road Type and IVIS Task Type on Driver Behavior and Driving Performance in Agricultural Tractors

ORCID Icon, , , , &
Pages 3159-3172 | Received 09 Nov 2022, Accepted 17 Feb 2023, Published online: 14 Mar 2023

References

  • Af Wåhlberg, A. E. (2012). Changes in driver celeration behavior over time: Do drivers learn from collisions? Transportation Research Part F: Traffic Psychology and Behaviour, 15(5), 471–479. https://doi.org/10.1016/10.1016/j.trf.2012.04.002
  • Ahlstrom, C., & Kircher, K. (2017). Changes in glance behavior when using a visual eco-driving system–A field study. Applied Ergonomics, 58, 414–423. https://doi.org/10.1016/j.apergo.2016.08.001
  • Ahmadi, A., & Machiani, S. G. (2019). Drivers’ performance examination using a personalized adaptive curve speed warning: Driving simulator study. International Journal of Human–Computer Interaction, 35(11), 996–1007. https://doi.org/10.1080/10447318.2018.1561785
  • Angelini, L., Baumgartner, J., Carrino, F., Carrino, S., Caon, M., Khaled, O. A., Sauer, J., Lalanne, D., Mugellini, E., & Sonderegger, A. (2016). Comparing gesture, speech and touch interaction modalities for in-vehicle infotainment systems. In IHM ‘16: Actes de la 28ième Conférence Francophone Sur L’Interaction Homme-Machine (pp. 188–196). ACM. https://doi.org/10.1145/3004107.3004118
  • Anttila, V., & Luoma, J. (2005). Surrogate in-vehicle information systems and driver behavior in an urban environment: A field study on the effects of visual and cognitive load. Transportation Research Part F: Traffic Psychology and Behaviour, 8(2), 121–133. https://doi.org/10.1016/j.trf.2005.04.007
  • Awan, U., Gölgeci, I., Makhmadshoev, D., & Mishra, N. (2022). Industry 4.0 and circular economy in an era of global value chains: What have we learned and what is still to be explored? Journal of Cleaner Production, 371, 133621. https://doi.org/10.1016/j.jclepro.2022.133621
  • Aydin, M. M., Gunay, B., & Akgol, K. (2019). Performance comparison of various chicane types: A driving simulator study. International Journal of Civil Engineering, 17(11), 1753–1765. https://doi.org/10.1007/s40999-019-00435-0
  • Babić, D., Babić, D., Cajner, H., Sruk, A., & Fiolić, M. (2020). Effect of road markings and traffic signs presence on young driver stress level, eye movement and behavior in night-time conditions: A driving simulator study. Safety, 6(2), 24. https://doi.org/10.3390/safety6020024
  • Bella, F., & Silvestri, M. (2017). Interaction driver–bicyclist on rural roads: Effects of cross-sections and road geometric elements. Accident Analysis and Prevention, 102, 191–201. https://doi.org/10.1016/j.aap.2017.03.008
  • Birrell, S. A., & Young, M. S. (2011). The impact of smart driving aids on driving performance and driver distraction. Transportation Research Part F: Traffic Psychology and Behaviour, 14(6), 484–493. https://doi.org/10.1016/j.trf.2011.08.004
  • Blanco, M., Biever, W. J., Gallagher, J. P., & Dingus, T. A. (2006). The impact of secondary task cognitive processing demand on driving performance. Accident Analysis and Prevention, 38(5), 895–906. https://doi.org/10.1016/j.aap.2006.02.015
  • Boulagouas, W., García-Herrero, S., Chaib, R., Febres, J. D., Mariscal, M. Á., & Djebabra, M. (2020). An investigation into unsafe behaviors and traffic accidents involving unlicensed drivers: A perspective for alignment measurement. International Journal of Environmental Research and Public Health, 17(18), 6743. https://doi.org/10.3390/ijerph17186743
  • Brinkley, J., Posadas, B., Sherman, I., Daily, S. B., & Gilbert, J. E. (2019). An open road evaluation of a self-driving vehicle human–machine interface designed for visually impaired users. International Journal of Human–Computer Interaction, 35(11), 1018–1032. https://doi.org/10.1080/10447318.2018.1561787
  • Brown, T. L., Milavetz, G., Gaffney, G., & Spurgin, A. (2018). Evaluating drugged driving: Effects of exemplar pain and anxiety medications. Traffic Injury Prevention, 19(sup1), S97–S103. https://doi.org/10.1080/15389588.2017.1378814
  • Calvi, A. (2015). A study on driving performance along horizontal curves of rural roads. Journal of Transportation Safety & Security, 7(3), 243–267. https://doi.org/10.1080/19439962.2014.952468
  • Charlton, S. G., & Starkey, N. J. (2017). Driving on urban roads: How we come to expect the ‘correct’ speed. Accident Analysis & Prevention, 108, 251–260. https://doi.org/10.1016/j.aap.2017.09.010
  • Charlton, S. G., Starkey, N. J., Perrone, J. A., & Isler, R. B. (2014). What’s the risk? A comparison of actual and perceived driving risk. Transportation Research Part F: Traffic Psychology and Behaviour, 25, 50–64. https://doi.org/10.1016/j.trf.2014.05.003
  • Choudhari, T., & Maji, A. (2022). Modeling driver’s braking and steering behavior along horizontal curves of two-lane rural highways for ADAS applications. Traffic Injury Prevention, 23(7), 404–409. https://doi.org/10.1080/15389588.2022.2097669
  • Chu, W., Wu, C., Atombo, C., Zhang, H., & Özkan, T. (2019). Traffic climate, driver behavior, and accidents involvement in China. Accident Analysis & Prevention, 122, 119–126. https://doi.org/10.1016/j.aap.2018.09.007
  • Compiled by National Bureau of Statistics of China. (2020). China statistical yearbook in 2020. https://data.stats.gov.cn/easyquery.htm?cn=C01
  • Cox, D. J., Owens, J. M., Barnes, L., Moncrief, M., Boukhechba, M., Buckman, S., Banton, T., & Wotring, B. (2020). A pilot study comparing newly licensed drivers with and without autism and experienced drivers in simulated and on-road driving. Journal of Autism and Developmental Disorders, 50(4), 1258–1268. https://doi.org/10.1007/s10803-019-04341-1
  • Deng, Z., Chu, D., Wu, C., He, Y., & Cui, J. (2019). Curve safe speed model considering driving style based on driver behavior questionnaire. Transportation Research Part F: Traffic Psychology and Behaviour, 65, 536–547. https://doi.org/10.1016/j.trf.2018.02.007
  • Dingus, T. A., Guo, F., Lee, S., Antin, J. F., Perez, M., Buchanan-King, M., & Hankey, J. (2016). Driver crash risk factors and prevalence evaluation using naturalistic driving data. Proceedings of the National Academy of Sciences, 113(10), 2636–2641. https://doi.org/10.1073/pnas.1513271113
  • Dotse, J. E., & Rowe, R. (2021). Modelling Ghanaian road crash risk using the Manchester driver behavior Questionnaire. Safety Science, 139, 105213. https://doi.org/10.1016/j.ssci.2021.105213
  • Dukic, T., & Broberg, T. (2012). Older drivers’ visual search behavior at intersections. Transportation Research Part F: Traffic Psychology and Behaviour, 15(4), 462–470. https://doi.org/10.1016/j.trf.2011.10.001
  • Eckersley, A., & Butters, L. (2014). The Influence of modern day tractor cab ergonomics on productivity. Scientific Papers-Series A, Agronomy, 57, 389–394.
  • El Haouij, N., Poggi, J. M., Ghozi, R., Sevestre-Ghalila, S., & Jaïdane, M. (2019). Random forest-based approach for physiological functional variable selection for driver’s stress level classification. Statistical Methods & Applications, 28(1), 157–185. https://doi.org/10.1007/s10260-018-0423-5
  • Engström, J., Johansson, E., & Östlund, J. (2005). Effects of visual and cognitive load in real and simulated motorway driving. Transportation Research Part F: Traffic Psychology and Behaviour, 8(2), 97–120. https://doi.org/10.1016/j.trf.2005.04.012
  • Faure, V., Lobjois, R., & Benguigui, N. (2016). The effects of driving environment complexity and dual tasking on drivers’ mental workload and eye blink behavior. Transportation Research Part F: Traffic Psychology and Behaviour, 40, 78–90. https://doi.org/10.1016/j.trf.2016.04.007
  • Feng, F., Liu, Y., & Chen, Y. (2018). Effects of quantity and size of buttons of in-vehicle touch screen on drivers’ eye glance behavior. International Journal of Human–Computer Interaction, 34(12), 1105–1118. https://doi.org/10.1080/10447318.2017.1415688
  • Feng, Z., Yang, M., Du, Y., Xu, J., Huang, C., & Jiang, X. (2021). Effects of the spatial structure conditions of urban underpass tunnels’ longitudinal section on drivers’ physiological and behavioral comfort. International Journal of Environmental Research and Public Health, 18(20), 10992. https://doi.org/10.3390/ijerph182010992
  • Figueroa-Medina, A. M. (2005). Subjective and objective risks consideration in modeling highway safety. Purdue University.
  • Figueroa-Medina, A. M., & Tarko, A. P. (2007). Speed changes in the vicinity of horizontal curves on two-lane rural roads. Journal of Transportation Engineering, 133(4), 215–222. https://doi.org/10.1061/(ASCE)0733-947X(2007)133:4(215)
  • Funazaki, Y., Seto, N., Ninomiya, K., Hikawa, K., Nakamura, S., & Yamanaka, S. (2022). Driving experiment system using HMDs to measure drivers’ proficiency and difficulty of various road conditions. In H. Krömker (Ed.), International conference on human-computer interaction (pp. 247–257). Springer. https://doi.org/10.1007/978-3-031-04987-3_17
  • Gerber, J. M., & Joubert, J. W. (2022). Impact of road grade on the risk profile of driver behavior. Transportation Research Record, 2677(2), 235–245. https://doi.org/10.1177/03611981221089939
  • Gorucu, S., Murphy, D., Foster, D., Hanagriff, R., & Ewing, J. (2018). Technology use among youth while operating farm equipment. Journal of Agromedicine, 23(4), 305–314. https://doi.org/10.1080/1059924X.2018.1501450
  • Graichen, L., Graichen, M., & Krems, J. F. (2019). Evaluation of gesture-based in-vehicle interaction: User experience and the potential to reduce driver distraction. Human Factors: The Journal of the Human Factors and Ergonomics Society, 61(5), 774–792. https://doi.org/10.1177/0018720818824253
  • Guo, B., Hua, Q., Jin, L., Xie, X., Huo, Z., & Wang, H. (2022). Analysis of driving control characteristics in typical road types. Sustainability, 14(2), 782. https://doi.org/10.3390/su14020782
  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (task load index): Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Advances in psychology (Vol. 52, pp. 139–183). North-Holland. https://doi.org/10.1016/S0166-4115(08)62386-9
  • Jeong, H., & Liu, Y. (2019). Effects of non-driving-related-task modality and road geometry on eye movements, lane-keeping performance, and workload while driving. Transportation Research Part F: Traffic Psychology and Behaviour, 60, 157–171. https://doi.org/10.1016/j.trf.2018.10.015
  • Johnson, M. J., Chahal, T., Stinchcombe, A., Mullen, N., Weaver, B., & Bédard, M. (2011). Physiological responses to simulated and on-road driving. International Journal of Psychophysiology, 81(3), 203–208. https://doi.org/10.1016/j.ijpsycho.2011.06.012
  • Jung, S., Park, J., Park, J., Choe, M., Kim, T., Choi, M., & Lee, S. (2021). Effect of touch button interface on in-vehicle information systems usability. International Journal of Human–Computer Interaction, 37(15), 1404–1422. https://doi.org/10.1080/10447318.2021.1886484
  • Kabir, M. S. N., Chung, S. O., Kim, Y. J., Sung, N. S., & Hong, S. J. (2017). Measurement and evaluation of whole body vibration of agricultural tractor operator. International Journal of Agricultural and Biological Engineering, 10(1), 248–255. https://doi.org/10.3965/j.ijabe.20171001.2113
  • Karimi, D., Mondor, T. A., & Mann, D. D. (2008). Application of auditory signals to the operation of an agricultural vehicle: Results of pilot testing. Journal of Agricultural Safety and Health, 14(1), 71–78. https://doi.org/10.13031/2013.24124
  • Kim, H. S., Hwang, Y., Yoon, D., Choi, W., & Park, C. H. (2014). Driver workload characteristics analysis using EEG data from an urban road. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1844–1849. https://doi.org/10.1109/TITS.2014.2333750
  • Kim, J., Kim, W., Kim, H. S., Yoon, D. (2020). A study on the correlation between subjective driver readiness and NDRT Type during automated driving. In 2020 international conference on information and communication technology convergence (ICTC) (pp. 1774–1776). IEEE. https://doi.org/10.1109/ICTC49870.2020.9289293
  • Kim, M. H., & Son, J. (2011). On-road assessment of in-vehicle driving workload for older drivers: Design guidelines for intelligent vehicles. International Journal of Automotive Technology, 12(2), 65–272. https://doi.org/10.1007/s12239-011-0031-y
  • Kim, N., Choe, M., Park, J., Park, J., Kim, H. K., Kim, J., Hussain, M., & Jung, S. (2021). Analysis of relationship between electroencephalograms and subjective measurements for in-vehicle information system: A preliminary study. International Journal of Environmental Research and Public Health, 18(22), 12173. https://doi.org/10.3390/ijerph182212173
  • Klauer, S. G., Guo, F., Simons-Morton, B. G., Ouimet, M. C., Lee, S. E., & Dingus, T. A. (2014). Distracted driving and risk of road crashes among novice and experienced drivers. New England Journal of Medicine, 370(1), 54–59. https://doi.org/10.1056/NEJMsa1204142
  • Koohestani, A., Kebria, P. M., Khosravi, A., Nahavandi, S. (2019). Drivers awareness evaluation using physiological measurement in a driving simulator. In 2019 IEEE international conference on industrial technology (ICIT) (pp. 859–864). IEEE. https://doi.org/10.1109/ICIT.2019.8755188
  • Lansdown, T. C. (2012). Individual differences and propensity to engage with in-vehicle distractions–A self-report survey. Transportation Research Part F: Traffic Psychology and Behaviour, 15(1), 1–8. https://doi.org/10.1016/j.trf.2011.09.001
  • Lee, J., Kishino, S., & Suzuki, K. (2020). Riding performance quantification method for motorcycles in terms of collision probability using the logit model. Mechanical Engineering Journal, 7(4), 20–00015. https://doi.org/10.1299/mej.20-00015
  • Lehtonen, E., Lappi, O., & Summala, H. (2012). Anticipatory eye movements when approaching a curve on a rural road depend on working memory load. Transportation Research Part F: Traffic Psychology and Behaviour, 15(3), 369–377. https://doi.org/10.1016/j.trf.2011.08.007
  • Li, N., & Boyle, L. N. (2020). Allocation of driver attention for varying in-vehicle system modalities. Human Factors: The Journal of the Human Factors and Ergonomics Society, 62(8), 1349–1364. https://doi.org/10.1177/0018720819879585
  • Li, X., Schroeter, R., Rakotonirainy, A., Kuo, J., & Lenné, M. G. (2021). Get ready for take-overs: using head-up display for drivers to engage in non–driving-related tasks in automated vehicles. Human Factors: The Journal of the Human Factors and Ergonomics Society, 00187208211056200. https://doi.org/10.1177/00187208211056200
  • Li, X., Yan, X., & Wong, S. C. (2015). Effects of fog, driver experience and gender on driving behavior on S-curved road segments. Accident Analysis & Prevention, 77, 91–104. https://doi.org/10.1016/j.aap.2015.01.022
  • Li, Y. P., Cao, Z., Feng, L., & Yang, Z. G. (2013). Road traffic crash accident distribution law analysis in China. In Applied mechanics and materials (Vol. 253, pp. 1611–1614). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMM.253-255.1611
  • Ma, J., Li, J., & Gong, Z. (2022). Evaluation of driver distraction from in-vehicle information systems: A simulator study of interaction modes and secondary tasks classes on eight production cars. International Journal of Industrial Ergonomics, 92, 103380. https://doi.org/10.1016/j.ergon.2022.103380
  • Mantzke, O., & Keinath, A. (2015). Relating the detection response task to critical events–Consequences of high cognitive workload to brake reaction times. Procedia Manufacturing, 3, 2381–2386. https://doi.org/10.1016/j.promfg.2015.07.386
  • McNally, B., & Bradley, G. L. (2014). Re-conceptualising the reckless driving behavior of young drivers. Accident Analysis & Prevention, 70, 245–257. https://doi.org/10.1016/j.aap.2014.04.014
  • Metz, B., Schoch, S., Just, M., & Kuhn, F. (2014). How do drivers interact with navigation systems in real life conditions?: Results of a field-operational-test on navigation systems. Transportation Research Part F: Traffic Psychology and Behaviour, 24, 146–157. https://doi.org/10.1016/j.trf.2014.04.011
  • Meuleners, L., & Fraser, M. (2015). A validation study of driving errors using a driving simulator. Transportation Research Part F: Traffic Psychology and Behaviour, 29, 14–21. https://doi.org/10.1016/j.trf.2014.11.009
  • Minusa, S., Mizuno, K., Ojiro, D., Tanaka, T., Kuriyama, H., Yamano, E., Kuratsune, H., & Watanabe, Y. (2021). Increase in rear-end collision risk by acute stress-induced fatigue in on-road truck driving. PLoS One. 16(10), e0258892. https://doi.org/10.1371/journal.pone.0258892
  • Najib, L., Abdullah, L., Abdullah, I., & Salleh, Z. (2012). Weights of road accident causes using analytic hierarchy process. ARPN Journal of Science and Technology, 2(2), 39–44.
  • Neyens, D. M., & Boyle, L. N. (2007). The effect of distractions on the crash types of teenage drivers. Accident Analysis & Prevention, 39(1), 206–212. https://doi.org/10.1016/j.aap.2006.07.004
  • Niu, J., Wang, X., Liu, X., Wang, D., Qin, H., & Zhang, Y. (2019). Effects of mobile phone use on driving performance in a multiresource workload scenario. Traffic Injury Prevention, 20(1), 37–44. https://doi.org/10.1080/15389588.2018.1527468
  • Onate-Vega, D., Oviedo-Trespalacios, O., & King, M. J. (2020). How drivers adapt their behavior to changes in task complexity: The role of secondary task demands and road environment factors. Transportation Research Part F: Traffic Psychology and Behavior, 71, 145–156. https://doi.org/10.1016/j.trf.2020.03.015
  • Oviedo-Trespalacios, O., Haque, M. M., King, M., & Washington, S. (2017). Effects of road infrastructure and traffic complexity in speed adaptation behavior of distracted drivers. Accident Analysis & Prevention, 101, 67–77. https://doi.org/10.1016/j.aap.2017.01.018
  • Oviedo-Trespalacios, O., Nandavar, S., & Haworth, N. (2019). How do perceptions of risk and other psychological factors influence the use of in-vehicle information systems (IVIS)? Transportation Research Part F: Traffic Psychology and Behavior, 67, 113–122. https://doi.org/10.1016/j.trf.2019.10.011
  • Park, M. S., Fukuda, T., Kim, T. G., & Maeda, S. (2013). Health risk evaluation of whole-body vibration by ISO 2631-5 and ISO 2631-1 for operators of agricultural tractors and recreational vehicles. Industrial Health, 51(3), 364–370. https://doi.org/10.2486/indhealth.2012-0045
  • Perello-March, J. R., Burns, C. G., Woodman, R., Elliott, M. T., & Birrell, S. A. (2021). Driver state monitoring: Manipulating reliability expectations in simulated automated driving scenarios. IEEE Transactions on Intelligent Transportation Systems, 23(6), 5187–5197. https://doi.org/10.1109/TITS.2021.3050518
  • Qin, L., & Hamdar, S. H. (2015). Weather and road geometry impact on acceleration behavior: Experimental set-up and data collection using a driving simulator. In M. Chraibi, M. Boltes, A. Schadschneider, & A. Seyfried (Eds.), Traffic and granular flow’13 (pp. 513–523). Springer. https://doi.org/10.1007/978-3-319-10629-8_57
  • Radhakrishnan, V., Merat, N., Louw, T., Gonçalves, R. C., Torrao, G., Lyu, W., Guillen, P. P., & Lenné, M. G. (2022). Physiological indicators of driver workload during car-following scenarios and takeovers in highly automated driving. Transportation Research Part F: Traffic Psychology and Behavior, 87, 149–163. https://doi.org/10.1016/j.trf.2022.04.002
  • Reyes, M. L., & Lee, J. D. (2008). Effects of cognitive load presence and duration on driver eye movements and event detection performance. Transportation Research Part F: Traffic Psychology and Behavior, 11(6), 391–402. https://doi.org/10.1016/j.trf.2008.03.004
  • Roman, G. D., Poulter, D., Barker, E., McKenna, F. P., & Rowe, R. (2015). Novice drivers’ individual trajectories of driver behavior over the first three years of driving. Accident Analysis & Prevention, 82, 61–69. https://doi.org/10.1016/j.aap.2015.05.012
  • Sadia, R., Bekhor, S., & Polus, A. (2018). Speed variation for different drivers, situations, and road geometry: Simulator and survey analysis. Journal of Transportation Safety & Security, 10(1–2), 25–44. https://doi.org/10.1080/19439962.2016.1275071
  • Sheng, L. I. N., Jian-Bei, L. I. U., Ying, Y. A. N., Jing, L. U. O., & Zhen-Zhou, Y. U. A. N. (2013). Safety evaluation model of long-steep downgrade section for montane highway based on driving workload. Journal of Traffic and Transportation Engineering, 13(6), 99–106.
  • Skottke, E. M., Debus, G., Wang, L., & Huestegge, L. (2014). Carryover effects of highly automated convoy driving on subsequent manual driving performance. Human Factors, 56(7), 1272–1283. https://doi.org/10.1177/0018720814524594
  • Stapel, J., Mullakkal-Babu, F. A., & Happee, R. (2019). Automated driving reduces perceived workload, but monitoring causes higher cognitive load than manual driving. Transportation Research Part F: traffic Psychology and Behavior, 60, 590–605. https://doi.org/10.1016/j.trf.2018.11.006
  • Strayer, D. L., Cooper, J. M., McCarty, M. M., Getty, D. J., Wheatley, C. L., Motzkus, C. J., Goethe, R. M., Biondi, F., & Horrey, W. J. (2019). Visual and cognitive demands of carplay, android auto, and five native infotainment systems. Human Factors, 61(8), 1371–1386. https://doi.org/10.1177/0018720819836575
  • Sundfør, H. B., Sagberg, F., & Høye, A. (2019). Inattention and distraction in fatal road crashes–Results from in-depth crash investigations in Norway. Accident Analysis & Prevention, 125, 152–157. https://doi.org/10.1016/j.aap.2019.02.004
  • Victor, T., Dozza, M., Bärgman, J., Boda, C. N., Engström, J., Flannagan, C., Lee, J. D., & Markkula, G. (2015). Analysis of naturalistic driving study data: Safer glances, driver inattention, and crash risk (No. SHRP 2 Report S2-S08A-RW-1). The National Academies Press. https://doi.org/10.17226/22297
  • Wan, J., & Wu, C. (2018). The effects of vibration patterns of take-over request and non-driving tasks on taking-over control of automated vehicles. International Journal of Human–Computer Interaction, 34(11), 987–998. https://doi.org/10.1080/10447318.2017.1404778
  • Wang, K., Zhang, W., Feng, Z., Sze, N. N., Hu, Z., & Wang, C. (2020). Maximum acceptable speed based on physiological performance for different alignments of rural roads under the influence of visibility in fog—A driving simulator study. Traffic Injury Prevention, 21(2), 145–150. https://doi.org/10.1080/15389588.2020.1724978
  • Xie, L., Wu, C., Duan, M., & Lyu, N. (2021). Analysis of freeway safety influencing factors on driving workload and performance based on the gray correlation method. Journal of Advanced Transportation, 2021. https://doi.org/10.1155/2021/6566207
  • Xie, L., Wu, C., Lyu, N., & Duan, Z. (2019). Studying the effects of freeway alignment, traffic flow, and sign information on subjective driving workload and performance. Advances in Mechanical Engineering, 11(5), 1687814019853690. https://doi.org/10.1177/1687814019853925
  • Yan, W., Wong, S. C., Loo, B. P. Y., Wu, C. Y. H., Huang, H., Pei, X., & Meng, F. (2022). An assessment of the effect of green signal countdown timers on drivers’ behavior and on road safety at intersections, based on driving simulator experiments and naturalistic observation studies. Journal of Safety Research, 82, 1–12. https://doi.org/10.1016/j.jsr.2022.04.001
  • Zhang, Y., Gao, P., & Ahamed, T. (2018). Development of a rescue system for agricultural machinery operators using machine vision. Biosystems Engineering, 169, 149–164. https://doi.org/10.1016/j.biosystemseng.2018.02.009
  • Zhao, J., & Mao, E. (2022). Emerging automated technologies on tractors. In S. Ma, T. Lin, E. Mao, Z. Song, & K. C. Ting (Eds.), Sensing, data managing, and control technologies for agricultural systems (pp. 203–222). Springer. https://doi.org/10.1007/978-3-031-03834-1_9
  • Zhao, J. Y., He, C., & Zheng, M. M. (2010). Effect of longitudinal slope of tunnel of freeway on heart beat of drivers. Journal of Chang’an University (Natural Science Edition), 30(2), 80–83. https://doi.org/10.19721/j.cnki.1671-8879.2010.02.017
  • Zhao, X., Du, Y., Mao, E., Zhu, Z., & Song, Z. (2022). Agricultural tractor dynamics simulation research based on a driving simulator with real-time human-machine interaction. Computers and Electronics in Agriculture, 203, 107443. https://doi.org/10.1016/j.compag.2022.107443
  • Ziakopoulos, A. (2021). Spatial analysis of harsh driving behavior events in urban networks using high-resolution smartphone and geometric data. Accident; Analysis and Prevention, 157, 106189. https://doi.org/10.1016/j.aap.2021.106189

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.