325
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Absence of Inertial Load on Hand Decreases Task Performance in Virtual Reality Interaction

, , , , , , , , , , & show all
Pages 3219-3233 | Received 29 Nov 2022, Accepted 22 Feb 2023, Published online: 17 Mar 2023

References

  • Adilkhanov, A., Rubagotti, M., & Kappassov, Z. (2022). Haptic devices: Wearability-based taxonomy and literature review. IEEE Access, 10, 91923–91947. https://doi.org/10.1109/Access.2022.3202986
  • Arlati, S., Keijsers, N., Paolini, G., Ferrigno, G., & Sacco, M. (2021). Kinematics of aimed movements in ecological immersive virtual reality: A comparative study with real world. Virtual Reality, 26(3), 885–901. https://doi.org/10.1007/s10055-021-00603-5
  • Baldauf, D., & Deubel, H. (2010). Attentional landscapes in reaching and grasping. Vision Research, 50(11), 999–1013. https://doi.org/10.1016/j.visres.2010.02.008
  • Baldauf, D., Wolf, M., & Deubel, H. (2006). Deployment of visual attention before sequences of goal-directed hand movements. Vision Research, 46(26), 4355–4374. https://doi.org/10.1016/j.visres.2006.08.021
  • Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12(12), 752–762. https://doi.org/10.1038/nrn3122
  • Boisgontier, M. P., & Nougier, V. (2013). Ageing of internal models: From a continuous to an intermittent proprioceptive control of movement. Age, 35(4), 1339–1355. https://doi.org/10.1007/s11357-012-9436-4
  • Burkitt, J. J., Staite, V., Yeung, A., Elliott, D., & Lyons, J. L. (2015). Effector mass and trajectory optimization in the online regulation of goal-directed movement. Experimental Brain Research, 233(4), 1097–1107. https://doi.org/10.1007/s00221-014-4191-7
  • Cheng, C. H., Chang, C. C., Chen, Y. H., Lin, Y. L., Huang, J. Y., Han, P. H., Ko, J. C., Lee, L. C. (2018). GravityCup: A liquid-based haptics for simulating dynamic weight in virtual reality [Paper presentation]. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST.
  • Chen, K. B., Ponto, K., Tredinnick, R. D., & Radwin, R. G. (2015). Virtual exertions: Evoking the sense of exerting forces in virtual reality using gestures and muscle activity. Human Factors, 57(4), 658–673. https://doi.org/10.1177/0018720814562231
  • Chen, Y. P., & Tsai, M. J. (2015). Eye-hand coordination strategies during active video game playing: An eye-tracking study. Computers in Human Behavior, 51, 8–14. https://doi.org/10.1016/j.chb.2015.04.045
  • Corbett, B., Nam, C. S., & Yamaguchi, T. (2015). The effects of haptic feedback and visual distraction on pointing task performance. International Journal of Human-Computer Interaction, 32(2), 89–102. https://doi.org/10.1080/10447318.2015.1094914
  • de Brouwer, A. J., Flanagan, J. R., & Spering, M. (2021). Functional use of eye movements for an acting system. Trends in Cognitive Sciences, 25(3), 252–263. https://doi.org/10.1016/j.tics.2020.12.006
  • Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4(11), 423–431. https://doi.org/10.1016/S1364-6613(00)01537-0
  • Elliott, D., & Hansen, S. (2010). Visual regulation of manual aiming: A comparison of methods. Behavior Research Methods, 42(4), 1087–1095. https://doi.org/10.3758/Brm.42.4.1087
  • Elliott, D., Hansen, S., & Grierson, L. E. M. (2009). Optimising speed and energy expenditure in accurate visually directed upper limb movements. Ergonomics, 52(4), 438–447. https://doi.org/10.1080/00140130802707717
  • Elliott, D., Hansen, S., Grierson, L. E. M., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136(6), 1023–1044. https://doi.org/10.1037/a0020958
  • Elliott, D., Helsen, W. F., & Chua, R. (2001). A century later: Woodworth’s (1899) two-component model of goal-directed aiming. Psychological Bulletin, 127(3), 342–357. https://doi.org/10.1037//0033-2909.127.3.342
  • Elliott, D., Lyons, J., Hayes, S. J., Burkitt, J. J., Roberts, J. W., Grierson, L. E. M., Hansen, S., & Bennett, S. J. (2017). The multiple process model of goal-directed reaching revisited. Neuroscience and Biobehavioral Reviews, 72, 95–110. https://doi.org/10.1016/j.neubiorev.2016.11.016
  • Erra, U., Malandrino, D., & Pepe, L. (2019). Virtual reality interfaces for interacting with three-dimensional graphs. International Journal of Human-Computer Interaction, 35(1), 75–88. https://doi.org/10.1080/10447318.2018.1429061
  • Faure, C., Fortin-Cote, A., Robitaille, N., Cardou, P., Gosselin, C., Laurendeau, D., Mercier, C., Bouyer, L., & McFadyen, B. J. (2020). Adding haptic feedback to virtual environments with a cable-driven robot improves upper limb spatio-temporal parameters during a manual handling task. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(10), 2246–2254. https://doi.org/10.1109/TNSRE.2020.3021200
  • Flanagan, J. R., Bowman, M. C., & Johansson, R. S. (2006). Control strategies in object manipulation tasks. Current Opinion in Neurobiology, 16(6), 650–659. https://doi.org/10.1016/j.conb.2006.10.005
  • Fluet, M. C., Lambercy, O., & Gassert, R. (2011). Upper limb assessment using a Virtual Peg Insertion Test [Paper presentation]. IEEE International Conference on Rehabilitation Robotics.
  • Foerster, R. M., Carbone, E., Koesling, H., & Schneider, W. X. (2011). Saccadic eye movements in a high-speed bimanual stacking task: Changes of attentional control during learning and automatization. Journal of Vision, 11(7), 9. https://doi.org/10.1167/11.7.9
  • Furmanek, M. P., Schettino, L. F., Yarossi, M., Kirkman, S., Adamovich, S. V., & Tunik, E. (2019). Coordination of reach-to-grasp in physical and haptic-free virtual environments. Journal of NeuroEngineering and Rehabilitation, 16(1), 78. https://doi.org/10.1186/s12984-019-0525-9
  • Gerber, L. H., Narber, C. G., Vishnoi, N., Johnson, S. L., Chan, L., & Duric, Z. (2014). The feasibility of using haptic devices to engage people with chronic traumatic brain injury in virtual 3D functional tasks. Journal of NeuroEngineering and Rehabilitation, 11(1). https://doi.org/10.1186/1743-0003-11-117
  • Hansen, S., Elliott, D., & Khan, M. A. (2008). Quantifying the variability of three-dimensional aiming movements using ellipsoids. Motor Control, 12(3), 241–251. https://doi.org/10.1123/mcj.12.3.241
  • Herbst, I., & Stark, J. (2005). Comparing force magnitudes by means of vibro-tactile, auditory, and visual feedback [Paper presentation]. HAVE 2005: IEEE International Workshop on Haptic Audio Visual Environments and their Applications,
  • Johansson, R. S., Westling, G. R., Backstrom, A., & Flanagan, J. R. (2001). Eye-hand coordination in object manipulation. Journal of Neuroscience, 21(17), 6917–6932. https://doi.org/10.1523/Jneurosci.21-17-06917.2001
  • Kanzler, C. M., Rinderknecht, M. D., Schwarz, A., Lamers, I., Gagnon, C., Held, J. P. O., Feys, P., Luft, A. R., Gassert, R., & Lambercy, O. (2020). A data-driven framework for selecting and validating digital health metrics: Use-case in neurological sensorimotor impairments. NPJ Digital Medicine, 3(1), 80. https://doi.org/10.1038/s41746-020-0286-7
  • Kasuga, S., Crevecoeur, F., Cross, K. P., Balalaie, P., & Scott, S. H. (2022). Integration of proprioceptive and visual feedback during online control of reaching. Journal of Neurophysiology, 127(2), 354–372. https://doi.org/10.1152/jn.00639.2020
  • Khan, M. A., Elliot, D., Coull, J., Chua, R., & Lyons, J. (2002). Optimal control strategies under different feedback schedules: Kinematic evidence. Journal of Motor Behavior, 34(1), 45–57. https://doi.org/10.1080/00222890209601930
  • Khan, M. A., & Franks, I. M. (2003). Online versus offline processing of visual feedback in the production of component submovements. Journal of Motor Behavior, 35(3), 285–295. https://doi.org/10.1080/00222890309602141
  • Kim, J., Kim, S., & Lee, J. (2022). The effect of multisensory pseudo-haptic feedback on perception of virtual weight. IEEE Access, 10, 5129–5140. https://doi.org/10.1109/ACCESS.2022.3140438
  • Komogortsev, O. V., Gobert, D. V., Jayarathna, S., Koh, D. H., & Gowda, S. M. (2010). Standardization of automated analyses of oculomotor fixation and saccadic behaviors. IEEE Transactions on Biomedical Engineering, 57(11), 2635–2645. https://doi.org/10.1109/TBME.2010.2057429
  • Konczak, J., Sciutti, A., Avanzino, L., Squeri, V., Gori, M., Masia, L., Abbruzzese, G., & Sandini, G. (2012). Parkinson’s disease accelerates age-related decline in haptic perception by altering somatosensory integration. Brain, 135(11), 3371–3379. https://doi.org/10.1093/brain/aws265
  • Land, M., Mennie, N., & Rusted, J. (1999). The roles of vision and eye movements in the control of activities of daily living. Perception, 28(11), 1311–1328. https://doi.org/10.1068/p2935
  • Lavoie, E. B., Valevicius, A. M., Boser, Q. A., Kovic, O., Vette, A. H., Pilarski, P. M., Hebert, J. S., & Chapman, C. S. (2018). Using synchronized eye and motion tracking to determine high-precision eye-movement patterns during object-interaction tasks. Journal of Vision, 18(6), 18. https://doi.org/10.1167/18.6.18
  • Lederman, S. J., & Klatzky, R. L. (2009). Haptic perception: A tutorial. Attention Perception & Psychophysics, 71(7), 1439–1459. https://doi.org/10.3758/APP.71.7.1439
  • Levin, M. F., Magdalon, E. C., Michaelsen, S. M., & Quevedo, A. A. (2015). Quality of grasping and the role of haptics in a 3-D immersive virtual reality environment in individuals with stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(6), 1047–1055. https://doi.org/10.1109/TNSRE.2014.2387412
  • Liao, C. C., Koike, H., & Nakamura, T. (2020). Realtime center of mass adjustment via weight switching device inside a golf putter [Paper presentation]. Conference on Human Factors in Computing Systems – Proceedings, https://doi.org/10.1145/3334480.3383030
  • Liebermann, D. G., Berman, S., Weiss, P. L., & Levin, M. F. (2012). Kinematics of reaching movements in a 2-D virtual environment in adults with and without stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(6), 778–787. https://doi.org/10.1109/TNSRE.2012.2206117
  • Lim, W. N., Yap, K. M., Lee, Y., Wee, C., & Yen, C. C. (2021). A systematic review of weight perception in virtual reality: Techniques, challenges, and road ahead. IEEE Access, 9, 163253–163283. https://doi.org/10.1109/ACCESS.2021.3131525
  • Lin, C. J., Abreham, B. T., & Woldegiorgis, B. H. (2019). Effects of displays on a direct reaching task: A comparative study of head mounted display and stereoscopic widescreen display. International Journal of Industrial Ergonomics, 72, 372–379. https://doi.org/10.1016/j.ergon.2019.06.013
  • Lin, C. J., Abreham, B. T., & Woldegiorgis, B. H. (2021). Kinematics of direct reaching in head-mounted and stereoscopic widescreen virtual environments. Virtual Reality, 25(4), 1015–1028. https://doi.org/10.1007/s10055-021-00505-6
  • Liu, X., Zhang, Y., Jiang, X. T., & Zheng, B. (2022). Human eyes move to the target earlier when performing an aiming task with increasing difficulties. International Journal of Human-Computer Interaction. Advance online publication. https://doi.org/10.1080/10447318.2022.2115190
  • Liu, X., Zhu, Y., Huo, H., Wei, P., Wang, L., Sun, A., Hu, C., Yin, X., Lv, Z., & Fan, Y. (2019). Design of virtual guiding tasks with haptic feedback for assessing the wrist motor function of patients with upper motor neuron lesions. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(5), 984–994. https://doi.org/10.1109/TNSRE.2019.2909287
  • Llanes-Jurado, J., Marin-Morales, J., Guixeres, J., & Alcaniz, M. (2020). Development and calibration of an eye-tracking fixation identification algorithm for immersive virtual reality. Sensors, 20(17), 4956 https://doi.org/10.3390/s20174956
  • Magdalon, E. C., Michaelsen, S. M., Quevedo, A. A., & Levin, M. F. (2011). Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment. Acta Psychologica, 138(1), 126–134. https://doi.org/10.1016/j.actpsy.2011.05.015
  • McMahan, R. P., Bowman, D. A., Zielinski, D. J., & Brady, R. B. (2012). Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Transactions on Visualization and Computer Graphics, 18(4), 26–633. https://doi.org/10.1109/Tvcg.2012.43
  • Moon, H. S., Orr, G., & Jeon, M. (2022). Hand tracking with vibrotactile feedback enhanced presence, engagement, usability, and performance in a virtual reality rhythm game. International Journal of Human-Computer Interaction. Advance online publication. https://doi.org/10.1080/10447318.2022.2087000
  • Pacchierotti, C., Sinclair, S., Solazzi, M., Frisoli, A., Hayward, V., & Prattichizzo, D. (2017). Wearable haptic systems for the fingertip and the hand: Taxonomy, review, and perspectives. IEEE Transactions on Haptics, 10(4), 580–600. https://doi.org/10.1109/TOH.2017.2689006
  • Park, S., Toole, T., & Lee, S. (1999). Functional roles of the proprioceptive system in the control of goal-directed movement. Perceptual and Motor Skills, 88(2), 631–647. https://doi.org/10.2466/pms.1999.88.2.631
  • Pelz, J., Hayhoe, M., & Loeber, R. (2001). The coordination of eye, head, and hand movements in a natural task. Experimental Brain Research, 139(3), 266–277. https://doi.org/10.1007/s002210100745
  • Proske, U., & Gandevia, S. C. (2009). The kinaesthetic senses. Journal of Physiology-London, 587(17), 4139–4146. https://doi.org/10.1113/jphysiol.2009.175372
  • Proske, U., & Gandevia, S. C. (2012). The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews, 92(4), 1651–1697. https://doi.org/10.1152/physrev.00048.2011
  • Rao, H. M., Khanna, R., Zielinski, D. J., Lu, Y., Clements, J. M., Potter, N. D., Sommer, M. A., Kopper, R., & Appelbaum, L. G. (2018). Sensorimotor Learning during a marksmanship task in immersive virtual reality. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.00058
  • Ren, L., Khan, A. Z., Blohm, G., Henriques, D. Y. P., Sergio, L. E., & Crawford, J. D. (2006). Proprioceptive guidance of saccades in eye-hand coordination. Journal of Neurophysiology, 96(3), 1464–1477. https://doi.org/10.1152/jn.01012.2005
  • Ritchie, J., Bontilao, J., Kennelly, S., Topliss, J., Dunn, J., Renaud, A., Huber, T., De Gast, B. W., Piumsomboon, T. (2021). COMFlex. An adaptive haptic interface with shape-changing and weight-shifting mechanism for immersive virtual reality [Paper presentation]. 5th Asian CHI Symposium 2021.
  • Romeo Chua, D. E. (1993). Visual regulation of manual aiming. Human Movement Science, 12(4), 365–401. https://doi.org/10.1016/0167-9457(93)90026-L
  • Safstrom, D., Johansson, R. S., & Flanagan, J. R. (2014). Gaze behavior when learning to link sequential action phases in a manual task. Journal of Vision, 14(4), 3. https://doi.org/10.1167/14.4.3
  • Sajadi, B., & Majumder, A. (2012). Autocalibration of multiprojector CAVE-like immersive environments. IEEE Transactions on Visualization and Computer Graphics, 18(3), 381–393. https://doi.org/10.1109/TVCG.2011.271
  • Shibata, H., Gyoba, J., & Takeshima, Y. (2012). Perception of the end position of a limb loaded with a weight. Attention Perception & Psychophysics, 74(1), 225–238. https://doi.org/10.3758/s13414-011-0232-5
  • Shimizu, S., Hashimoto, T., Yoshida, S., Matsumura, R., Narumi, T., Kuzuoka, H. (2021). Unident: Providing impact sensations on handheld objects via high-speed change of the rotational inertia [Paper presentation]. Proceedings - 2021 IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2021.
  • Sigrist, R., Rauter, G., Riener, R., & Wolf, P. (2013). Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychonomic Bulletin & Review, 20(1), 21–53. https://doi.org/10.3758/s13423-012-0333-8
  • Sobinov, A. R., & Bensmaia, S. J. (2021). The neural mechanisms of manual dexterity. Nature Reviews Neuroscience, 22(12), 741–757. https://doi.org/10.1038/s41583-021-00528-7
  • Sobuh, M. M. D., Kenney, L. P. J., Galpin, A. J., Thies, S. B., McLaughlin, J., Kulkarni, J., & Kyberd, P. (2014). Visuomotor behaviours when using a myoelectric prosthesis. Journal of Neuroengineering and Rehabilitation, 11. https://doi.org/10.1186/1743-0003-11-72
  • Stellmacher, C., Bonfert, M., Kruijff, E., & Schöning, J. (2022). Triggermuscle: Exploring weight perception for virtual reality through adaptive trigger resistance in a haptic VR controller. Frontiers in Virtual Reality, 2. https://doi.org/10.3389/frvir.2021.754511
  • Sun, X. H., Ding, J. Y., Dong, Y. X., Ma, X. D., Wang, R., Jin, K. L., Zhang, H. X., & Zhang, Y. W. (2022). A survey of technologies facilitating home and community-based stroke rehabilitation. International Journal of Human-Computer Interaction. Advance online publication. https://doi.org/10.1080/10447318.2022.2050545
  • Tang, Z., Liu, X., Huo, H., Tang, M., Liu, T., Wu, Z., Qiao, X., Chen, D., An, R., Dong, Y., Fan, L., Wang, J., Du, X., & Fan, Y. (2022). The role of low-frequency oscillations in three-dimensional perception with depth cues in virtual reality. NeuroImage, 257. https://doi.org/10.1016/j.neuroimage.2022.119328
  • Turchet, L., Burelli, P., & Serafin, S. (2013). Haptic feedback for enhancing realism of walking simulations. IEEE Transactions on Haptics, 6(1), 35–45. https://doi.org/10.1109/ToH.2012.51
  • Urbin, M. A., Stodden, D. F., Fischman, M. G., & Weimar, W. H. (2011). Impulse-variability theory: Implications for ballistic, multijoint motor skill performance. Journal of Motor Behavior, 43(3), 275–283. https://doi.org/10.1080/00222895.2011.574172
  • van Beers, R. J., Wolpert, D. M., & Haggard, P. (2002). When feeling is more important than seeing in sensorimotor adaptation. Current Biology, 12(10), 834–837. https://doi.org/10.1016/S0960-9822(02)00836-9
  • Wang, X., Monteiro, D., Lee, L. H., Hui, P., Liang, H. N. (2022). VibroWeight: Simulating weight and center of gravity changes of objects in virtual reality for enhanced realism [Paper presentation]. IEEE Haptics Symposium, HAPTICS.
  • Wang, D. X., Ohnishi, K., & Xu, W. L. (2020). Multimodal haptic display for virtual reality: A survey. IEEE Transactions on Industrial Electronics, 67(1), 610–623. https://doi.org/10.1109/Tie.2019.2920602
  • Wilson, M., McGrath, J., Vine, S., Brewer, J., Defriend, D., & Masters, R. (2010). Psychomotor control in a virtual laparoscopic surgery training environment: Gaze control parameters differentiate novices from experts. Surgical Endoscopy and Other Interventional Techniques, 24(10), 2458–2464. https://doi.org/10.1007/s00464-010-0986-1
  • Woodworth, R. S. (1899). The accuracy of voluntary movement. Psychological Review, 3(Monograph Suppl), 1–119. https://doi.org/10.1037/h0092992
  • Ye, X. (2021). A survey on simulation for weight perception in virtual reality. Journal of Computer and Communications, 9(9), 1–24. https://doi.org/10.4236/jcc.2021.99001
  • Yu, X. G., Xie, Z. Q., Yu, Y., Lee, J., Vazquez-Guardado, A., Luan, H. W., Ruben, J., Ning, X., Akhtar, A., Li, D. F., Ji, B. W., Liu, Y. M., Sun, R. J., Cao, J. Y., Huo, Q. Z., Zhong, Y. S., Lee, C., Kim, S., Gutruf, P., … Rogers, J. A. (2019). Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature, 575(7783), 473+. https://doi.org/10.1038/s41586-019-1687-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.