215
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Performance Shaping Factor Dependency Assessment Based on International Civil Aviation Accident Report Data

ORCID Icon, , , &
Pages 1960-1974 | Received 04 Nov 2022, Accepted 06 Jun 2023, Published online: 04 Jul 2023

References

  • Adedigba, S. A., Khan, F., & Yang, M. (2016). Process accident model considering dependency among contributory factors. Process Safety and Environmental Protection, 102(C), 633–647. https://doi.org/10.1016/j.psep.2016.05.004
  • Bandeira, M. C. G. S. P., Correia, A. R., & Martins, M. R. (2018). General model analysis of aeronautical accidents involving human and organizational factors. Journal of Air Transport Management, 69(C), 137–146. https://doi.org/10.1016/j.jairtraman.2018.01.007
  • Bedny, I. S., Karwowski, W., & Bedny, G. Z. (2010). A method of human reliability assessment based on systemic-structural activity theory. International Journal of Human-Computer Interaction, 26(4), 377–402. https://doi.org/10.1080/10447310903575507
  • Bollen, K. A. (1998). Structural equation models. Wiley Online Library, John Wiley & Sons.
  • Booth, P. A. (1990). Identifying and interpreting design errors. International Journal of Human-Computer Interaction, 2(4), 307–332. https://doi.org/10.1080/10447319009525988
  • Boring, R. L. (2015). A dynamic approach to modeling dependence between human failure events [Paper presentation]. Conference: European Safety and Reliability (ESREL) Conference, Zürich, Switzerland, 9/7/2015 – 9/9/2015, United States. https://www.osti.gov/biblio/1239877 https://www.osti.gov/servlets/purl/1239877
  • CAA. (2013). Global fatal accident review 2002–2011. Civil Aviation Authority.
  • Carroll, M., & Dahlstrom, N. (2021). Human computer interaction on the modern flight deck. International Journal of Human–Computer Interaction, 37(7), 585–587. https://doi.org/10.1080/10447318.2021.1890495
  • Čepin, M. (2008). DEPEND-HRA—A method for consideration of dependency in human reliability analysis. Reliability Engineering & System Safety, 93(10), 1452–1460. https://doi.org/10.1016/j.ress.2007.10.004
  • Chang, Y., & Mosleh, A. (2006). Performance influencing factors modeling in the IDAC model [Paper presentation].The 8th International Conference on Probabilistic Safety Assessment and Management, New Orleans, Louisiana, USA.
  • Chang, Y., & Mosleh, A. (2007). Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 2: IDAC performance influencing factors model. Reliability Engineering & System Safety, 92(8), 1014–1040. https://doi.org/10.1016/j.ress.2006.05.010
  • CICTT. (2012). Human Factors: Definitions and Usage Notes. CAST/ICAO Common Taxonomy Team (CICTT).
  • De Ambroggi, M., & Trucco, P. (2011). Modelling and assessment of dependent performance shaping factors through analytic network process. Reliability Engineering & System Safety, 96(7), 849–860. https://doi.org/10.1016/j.ress.2011.03.004
  • EASA. (2017). Annual safety review 2017. European Aviation Safety Agency.
  • Ellis, K. K., Prinzel, L. J., Kiggins, D. K., Nicholas, S. N., Ballard, K., Lake, R. C., & Arthur, T. J. (2021). High-fidelity line operational simulation evaluation of synthetic vision flight deck technology for enhanced unusual attitude awareness and recovery. International Journal of Human–Computer Interaction, 37(7), 642–654. https://doi.org/10.1080/10447318.2021.1890494
  • Embrey, D., Humphreys, P., Rosa, E., Kirwan, B., & Rea, K. (1984). SLIM-MAUD: An approach to assessing human error probabilities using structured expert judgment. Volume I. Overview of SLIM-MAUD (No. NUREG/CR-3518-Vol.1).
  • Foshee, V. A., Bauman, K. E., Arriaga, X. B., Helms, R. W., Koch, G. G., & Linder, G. F. (1998). An evaluation of safe dates, an adolescent dating violence prevention program. American Journal of Public Health, 88(1), 45–50. https://doi.org/10.2105/ajph.88.1.45
  • Gao, X., Su, X., Qian, H., & Pan, X. (2022). Dependence assessment in human reliability analysis under uncertain and dynamic situations. Nuclear Engineering and Technology, 54(3), 948–958. https://doi.org/10.1016/j.net.2021.09.045
  • Gertman, D. I., Blackman, H. S., Marble, J. L., Byers, J. C., & Smith, C. L. (2005). The SPAR-H Human Reliability Analysis Method (No. NUREG/CR-6883).
  • Groth, K. M., & Mosleh, A. (2009). A data-informed model of performance shaping factors and their interdependencies for use in human reliability analysis [Paper presentation]. European society for reliability annual meeting (ESREL 2009), Prague, Czech Republic.
  • Groth, K. M., & Mosleh, A. (2010). A performance shaping factors causal model for nuclear power plant human reliability analysis [Paper presentation]. 10th International Probabilistic Safety Assessment and Management Conference.
  • Groth, K. M., & Mosleh, A. (2012). Deriving causal Bayesian networks from human reliability analysis data: A methodology and example model. Proceedings of the Institution of Mechanical Engineers, 226(4), 361–379. https://doi.org/10.1177/1748006X11428107
  • Groth, K. M., Smith, R., & Moradi, R. (2019). A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science. Reliability Engineering & System Safety, 191(C), 106507. https://doi.org/10.1016/j.ress.2019.106507
  • Harris, D., & Stanton, N. A. (2010). Aviation as a system of systems: Preface to the special issue of human factors in aviation. Ergonomics, 53(2), 145–148. https://doi.org/10.1080/00140130903521587
  • Harris, D., Stanton, N. A., Marshall, A., Young, M. S., Demagalski, J., & Salmon, P. (2005). Using SHERPA to predict design-induced error on the flight deck. Aerospace Science and Technology, 9(6), 525–532. https://doi.org/10.1016/j.ast.2005.04.002
  • Hollnagel, E. (1998). Cognitive reliability and error analysis method (CREAM). Elsevier.
  • IATA. (2016). Safety report 2016. International Air Transport Association.
  • Jiang, W., Cao, Y., & Deng, X. (2020). A novel Z-network model based on Bayesian network and Z-number. IEEE Transactions on Fuzzy Systems, 28(8), 1585–1599. https://doi.org/10.1109/TFUZZ.2019.2918999
  • Kichline, M., Xing, J., & Chang, Y. J. (2021). Integrated human event analysis system dependency analysis guidance (IDHEAS-DEP) (No. RIL 2021-14). U. S. N. R. Commission.
  • Kichline, M., Xing, J., & Chang, Y. J. (2022). Dependency Analysis Using the Integrated Human Event Analysis System Human Reliability Analysis Methodology [Paper presentation]. Probabilistic Safety Assessment and Management PSAM 16, Honolulu, Hawaii, (June 26-July 1, 2022).
  • Kim, J. W., & Jung, W. (2003). A taxonomy of performance influencing factors for human reliability analysis of emergency tasks. Journal of Loss Prevention in the Process Industries, 16(6), 479–495. https://doi.org/10.1016/S0950-4230(03)00075-5
  • Kim, Y., Park, J., Jung, W., Jang, I., & Seong, P. H. (2015). A statistical approach to estimating effects of performance shaping factors on human error probabilities of soft controls. Reliability Engineering & System Safety, 142(C), 378–387. https://doi.org/10.1016/j.ress.2015.06.004
  • Lazaro, M. J., Kang, Y., Yun, M. H., & Kim, S. (2021). the effects of visual complexity and decluttering methods on visual search and target detection in cockpit displays. International Journal of Human–Computer Interaction, 37(7), 588–600. https://doi.org/10.1080/10447318.2021.1890491
  • Li, P. (2011). Study on human error and reliability in digital control system of nuclear power plant. South China University of Technology.
  • Li, P., Chen, G., Dai, L., Zhang, L., Zhao, M., & Chen, W. (2016). Methodology for analyzing the dependencies between human operators in digital control systems. Fuzzy Sets and Systems, 293(C), 127–143. https://doi.org/10.1016/j.fss.2015.04.002
  • Liu, H., Li, Z., Zhang, J., & You, X. (2018). A large group decision making approach for dependence assessment in human reliability analysis. Reliability Engineering & System Safety, 176(C), 135–144. https://doi.org/10.1016/j.ress.2018.04.008
  • Liu, J., Zou, Y., Wang, W., Zhang, L., Liu, X., Ding, Q., Qin, Z., & Čepin, M. (2021). Analysis of dependencies among performance shaping factors in human reliability analysis based on a system dynamics approach. Reliability Engineering & System Safety, 215(C), 107890. https://doi.org/10.1016/j.ress.2021.107890
  • Liu, J., Zou, Y., Wang, W., Zio, E., Yuan, C., Wang, T., & Jiang, J. (2022). A Bayesian belief network framework for nuclear power plant human reliability analysis accounting for dependencies among performance shaping factors. Reliability Engineering & System Safety, 228(C), 108766. https://doi.org/10.1016/j.ress.2022.108766
  • Liu, P., & Li, Z. (2014). Human error data collection and comparison with predictions by SPAR‐H. Risk Analysis, 34(9), 1706–1719. https://doi.org/10.1111/risa.12199
  • Liu, P., & Liu, J. (2020). Combined effect of multiple performance shaping factors on human reliability: Multiplicative or additive? International Journal of Human–Computer Interaction, 36(9), 828–838. https://doi.org/10.1080/10447318.2019.1695461
  • MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Taylor & Francis Group.
  • MacKinnon, D. P., Fritz, M. S., Williams, J., & Lockwood, C. M. (2007). Distribution of the product confidence limits for the indirect effect: Program PRODCLIN. Behavior Research Methods, 39(3), 384–389. https://doi.org/10.3758/bf03193007
  • MacKinnon, D. P., Lockwood, C. M., Brown, C. H., Wang, W., & Hoffman, J. M. (2007). The intermediate endpoint effect in logistic and probit regression. Clinical Trials, 4(5), 499–513. https://doi.org/10.1177/1740774507083434
  • Mkrtchyan, L., Podofillini, L., & Dang, V. N. (2015). Bayesian belief networks for human reliability analysis: A review of applications and gaps. Reliability Engineering & System Safety, 139(C), 1–16. https://doi.org/10.1016/j.ress.2015.02.006
  • Mumaw, R. J. (2021). Plan B for eliminating mode confusion: An interpreter display. International Journal of Human–Computer Interaction, 37(7), 693–702. https://doi.org/10.1080/10447318.2021.1890486
  • Netjasov, F., & Janic, M. (2008). A review of research on risk and safety modelling in civil aviation. Journal of Air Transport Management, 14(4), 213–220. https://doi.org/10.1016/j.jairtraman.2008.04.008
  • Paglioni, V. P., & Groth, K. M. (2022). Dependency definitions for quantitative human reliability analysis. Reliability Engineering & System Safety, 220, 108274. https://doi.org/10.1016/j.ress.2021.108274
  • Park, J., Jung, W., & Kim, J. (2020). Inter-relationships between performance shaping factors for human reliability analysis of nuclear power plants. Nuclear Engineering and Technology, 52(1), 87–100. https://doi.org/10.1016/j.net.2019.07.004
  • Parnell, K. J., Banks, V. A., Plant, K. L., Griffin, T. G. C., Beecroft, P., & Stanton, N. A. (2021). Predicting design-induced error on the flight deck: An aircraft engine oil leak scenario. Human Factors, 63(6), 938–955. https://doi.org/10.1177/0018720819872900
  • Podofillini, L., Dang, V., Zio, E., Baraldi, P., & Librizzi, M. (2010). Using expert models in human reliability analysis—A dependence assessment method based on fuzzy logic. Risk Analysis, 30(8), 1277–1297. https://doi.org/10.1111/j.1539-6924.2010.01425.x
  • Pregibon, D. (1981). Logistic regression diagnostics. The Annals of Statistics, 9(4), 705–724. https://doi.org/10.1214/aos/1176345513
  • Rangra, S., Sallak, M., Schön, W., & Vanderhaegen, F. (2017). A graphical model based on performance shaping factors for assessing human reliability. IEEE Transactions on Reliability, 66(4), 1120–1143. https://doi.org/10.1109/TR.2017.2755543
  • Skill, J. R., & Rules, K. (1983). Signals, signs and symbols and other distinctions in human performance models [Paper presentation]. IEEE Transactions on Systems, Man and Cybernetics (SMC-13)(3) (p. 257–266). IEEE.
  • Stanton, N. A., Harris, D., Salmon, P. M., Demagalski, J. M., Marshall, A., Young, M. S., Dekker, S. W., & Waldmann, T. (2006). Predicting design induced pilot error using HET (Human Error Template)–A new formal human error identification method for flight decks. The Aeronautical Journal, 110(1104), 107–115. https://doi.org/10.1017/S0001924000001056
  • Stephanidis, C., Salvendy, G., Antona, M., Chen, J. Y. C., Dong, J., Duffy, V. G., Fang, X., Fidopiastis, C., Fragomeni, G., Fu, L. P., Guo, Y., Harris, D., Ioannou, A., Jeong, K-a., Konomi, S. i., Krömker, H., Kurosu, M., Lewis, J. R., Marcus, A., … Zhou, J. (2019). Seven HCI grand challenges. International Journal of Human–Computer Interaction, 35(14), 1229–1269. https://doi.org/10.1080/10447318.2019.1619259
  • Swain, A. D., & Guttman, H. E. (1983). Handbook of human reliability analysis with emphasis on nuclear power plant applications (No. NUREG/CR-1278, SAND800 200).
  • Van Baelen, D., van Paassen, M. M., Ellerbroek, J., Abbink, D. A., & Mulder, M. (2021). Flying by feeling: Communicating flight envelope protection through haptic feedback. International Journal of Human–Computer Interaction, 37(7), 655–665. https://doi.org/10.1080/10447318.2021.1890489
  • Wang, L., Wang, Y., Chen, Y., Pan, X., & Zhang, W. (2020). Performance shaping factors dependence assessment through moderating and mediating effect analysis. Reliability Engineering & System Safety, 202(C), 107034. https://doi.org/10.1016/j.ress.2020.107034
  • Wang, L., Wang, Y., Chen, Y., Pan, X., Zhang, W., & Zhu, Y. (2020). Methodology for assessing dependencies between factors influencing airline pilot performance reliability: A case of taxiing tasks. Journal of Air Transport Management, 89(C), 101877. https://doi.org/10.1016/j.jairtraman.2020.101877
  • Wang, Z., Zeng, S., Guo, J., & Che, H. (2021). A Bayesian network for reliability assessment of man-machine phased-mission system considering the phase dependencies of human cognitive error. Reliability Engineering & System Safety, 207(C), 107385. https://doi.org/10.1016/j.ress.2020.107385
  • Williams, J. (1988). A data-based method for assessing and reducing human error to improve operational performance [Paper presentation]. Conference Record for 1988 IEEE Fourth Conference on Human Factors and Power Plants. IEEE.
  • Wynne, R. A., Parnell, K. J., Smith, M. A., Plant, K. L., & Stanton, N. A. (2021). Can’t touch this: Hammer time on touchscreen task performance variability under simulated turbulent flight conditions. International Journal of Human–Computer Interaction, 37(7), 666–679. https://doi.org/10.1080/10447318.2021.1890492
  • Xing, J., Chang, J., & DeJesus, J. (2020). Integrated human event analysis system for event and condition assessment(IDHEAS-ECA). (No. RIL-2020-02). U. S. N. R. Commission
  • Xing, J., Parry, G., Presley, M., Forester, J., Hendrickson, S., & Dang, V. (2017). An integrated human event analysis system (IDHEAS) for nuclear power plant internal events at-power application. (No. NUREG-2199). U. S. N. R. Commission.
  • Zhang, A., Gao, F., Yang, M., & Bi, W. (2020). Belief rule-based dependence assessment method under interval uncertainty. Quality and Reliability Engineering International, 36(7), 2459–2477. https://doi.org/10.1002/qre.2708
  • Zhang, L., Zhu, Y.-J., Hou, L.-X., & Liu, H.-C. (2021). New method for dependence assessment in human reliability analysis based on linguistic hesitant fuzzy information. Nuclear Engineering and Technology, 53(11), 3675–3684. https://doi.org/10.1016/j.net.2021.05.012
  • Zhang, X., & Mahadevan, S. (2021). Bayesian network modeling of accident investigation reports for aviation safety assessment. Reliability Engineering & System Safety, 209(9), 107371. https://doi.org/10.1016/j.ress.2020.107371
  • Zheng, X., & Deng, Y. (2018). Dependence assessment in human reliability analysis based on evidence credibility decay model and IOWA operator. Annals of Nuclear Energy, 112(3), 673–684. https://doi.org/10.1016/j.anucene.2017.10.045
  • Zio, E., Baraldi, P., Librizzi, M., Podofillini, L., & Dang, V. N. (2009). A fuzzy set-based approach for modeling dependence among human errors. Fuzzy Sets and Systems, 160(13), 1947–1964. https://doi.org/10.1016/j.fss.2009.01.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.