713
Views
12
CrossRef citations to date
0
Altmetric
Review

Approaches for delaying sexual maturation in salmon and their possible ecological and ethical implications

, &

References

  • Act on Animal Welfare CH.II. 2009. https://lovdata.no/dokument/NL/lov/2009-06-19-97
  • Adams, C. E., and J. E. Thorpe. 1989. Photoperiod and temperature effects on early development and reproductive investment in Atlantic salmon (Salmo salar L.). Aquaculture 79:403–409. doi:10.1016/0044-8486(89)90483-3.
  • Aksnes, A., B. Gjerde, and S. O. Roald. 1986. Biological, chemical and organoleptic changes during maturation of farmed Atlantic salmon, Salmo salar. Aquaculture 53:7–20. doi:10.1016/0044-8486(86)90295-4.
  • Alfnes, F., A. G. Guttormsen, G. Steine, and K. Kolstad. 2006. Consumers’ willingness to pay for the color of salmon: A choice experiment with real economic incentives. American Journal of Agricultural Economics 88:1050–1061. doi:10.1111/j.1467-8276.2006.00915.x.
  • Andersson, E., R. W. Schulz, R. Male, J. Bogerd, D. Patiña, S. Benedet, B. Norberg, and G. L. Taranger. 2013. Pituitary gonadotropin and ovarian gonadotropin receptor transcript levels: Seasonal and photoperiod-induced changes in the reproductive physiology of female Atlantic salmon (Salmo salar). General and Comparative Endocrinology 191:247–258. doi:10.1016/j.ygcen.2013.07.001.
  • Aquaculture Stewardship Council. 2012. ASC salmon standard. http://www.asc-aqua.org/upload/asc%20salmon%20standard_v1.0.pdf
  • Arge, R., M. S. Thomassen, R. K. Berge, J. L. Zambonino-Infante, B. F. Terjesen, M. Oehme, and K.-A. Rørvik. 2014. Reduction of early sexual maturation in male S0 Atlantic salmon (Salmo salar L.) by dietary supplementation of tetradecylthioacetic acid (TTA). Aquaculture Research 45:922–933. doi:10.1111/are.2014.45.issue-5.
  • Ashley, P. J. 2007. Fish welfare: Current issues in aquaculture. Applied Animal Behaviour Science 104:199–235. doi:10.1016/j.applanim.2006.09.001.
  • Benedet, S., E. Andersson, C. Mittelholzer, G. L. Taranger, and B. T. Björnsson. 2010. Pituitary and plasma growth hormone dynamics during sexual maturation of female Atlantic salmon. General and Comparative Endocrinology 167:77–85. doi:10.1016/j.ygcen.2010.02.011.
  • Benfey, T. J. 2001. Use of sterile triploid Atlantic salmon (Salmo salar L.) for aquaculture in New Brunswick, Canada. Ices Journal of Marine Science 58:525–529. doi:10.1006/jmsc.2000.1019.
  • Benfey, T. J. 2015. Effectiveness of triploidy as a management tool for reproductive containment of farmed fish: Atlantic salmon (Salmo salar) as a case study. Reviews in Aquaculture. doi:10.1111/raq.12092.
  • Bergqvist, J., and S. Gunnarsson. 2013. Finfish aquaculture: Animal welfare, the environment, and ethical implications. Journal of Agricultural & Environmental Ethics 26:75–99. doi:10.1007/s10806-011-9346-y.
  • Bessey, C., R. H. Devlin, N. R. Liley, and C. A. Biagi. 2004. Reproductive performance of growth-enhanced transgenic Coho salmon. Transactions of the American Fisheries Society 133:1205–1220. doi:10.1577/T04-010.1.
  • Boissy, A., G. Manteuffel, M. B. Jensen, R. O. Moe, B. Spruijt, L. J. Keeling, C. Winckler, et al. 2007. Assessment of positive emotions in animals to improve their welfare. Physiology & Behavior 92:375–397. doi:10.1016/j.physbeh.2007.02.003.
  • Bostock, J. 2011. The application of science and technology development in shaping current and future aquaculture production systems. The Journal of Agricultural Science 149:133–141. doi:10.1017/S0021859610001127.
  • Bremer, S., K. Millar, N. Wright, and M. Kaiser. 2015. Responsible techno-innovation in aquaculture: Employing ethical engagement to explore attitudes to GM salmon in Northern Europe. Aquaculture 437:370–381. doi:10.1016/j.aquaculture.2014.12.031.
  • Bromage, N., M. Porter, and C. Randall. 2001. The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture 197:63–98. doi:10.1016/S0044-8486(01)00583-X.
  • Broom, D. M. 1996. Animal welfare defined in terms of attempts to cope with the environment. Acta Agriculturae Scandinavica, Section A—Animal Science Supplement 27:22–28.
  • Brown, C. 2015. Fish intelligence, sentience and ethics. Animal Cognition 18:1–17. doi:10.1007/s10071-014-0761-0.
  • Chandroo, K. P., I. J. H. Duncan, and R. D. Moccia. 2004. Can fish suffer? Perspectives on sentience, pain, fear and stress. Applied Animal Behaviour Science 86:225–250. doi:10.1016/j.applanim.2004.02.004.
  • Chern, W. S., K. Rickertsen, N. Tsuboi, and T.-T. Fu. 2002. Consumer acceptance and willingness to pay for genetically modified vegetable oil and salmon: A multiple-country assessment. AgBioForum 5:105–112.
  • Christiansen, S. B., and P. Sandøe. 2000. Bioethics: Limits to the interference with life. Animal Reproduction Science 60–61:15–29. doi:10.1016/S0378-4320(00)00077-4.
  • Davis, G. P., and D. J. S. Hetzel. 2000. Integrating molecular genetic technology with traditional approaches for genetic improvement in aquaculture species. Aquaculture Research 31:3–10. doi:10.1046/j.1365-2109.2000.00438.x.
  • Depledge, M. H., and Z. Billinghurst. 1999. Ecological significance of endocrine disruption in marine invertebrates. Marine Pollution Bulletin 39:32–38. doi:10.1016/S0025-326X(99)00115-0.
  • Devlin, R. H., C. A. Biagi, and T. Y. Yesaki. 2004. Growth, viability and genetic characteristics of GH transgenic coho salmon strains. Aquaculture 236:607–632. doi:10.1016/j.aquaculture.2004.02.026.
  • Devlin, R. H., C. A. Biagi, T. Y. Yesaki, D. E. Smailus, and J. C. Byatt. 2001. Growth of domesticated transgenic fish—A growth-hormone transgene boosts the size of wild but not domesticated trout. Nature 409:781–782. doi:10.1038/35057314.
  • Devlin, R. H., P. A. Raven, L. F. Sundström, and M. Uh. 2009. Issues and methodology for development of transgenic fish for aquaculture with a focus on growth enhancement. In Molecular research in aquaculture, ed. K. Overturf, 217–260. Ames, IA: Wiley-Blackwell.
  • Devlin, R. H., D. Sakhrani, C. A. Biagi, J. L. Smith, T. Fujimoto, and B. Beckman. 2014. Growth and endocrine effect of growth hormone transgene dosage in diploid and triploid coho salmon. General and Comparative Endocrinology 196:112–122. doi:10.1016/j.ygcen.2013.11.023.
  • Devlin, R. H., D. Sakhrani, W. E. Tymchuk, M. L. Rise, and B. Goh 2009. Domestication and growth hormone transgenesis cause similar changes in gene expression in coho salmon (Oncorhynchus kisutch). Proceedings of the National Academy of Sciences 106:3047–3052.
  • Devlin, R. H., L. F. Sundström, and W. M. Muir. 2006. Interface of biotechnology and ecology for environmental risk assessments of transgenic fish. Trends in Biotechnology 24:89–97. doi:10.1016/j.tibtech.2005.12.008.
  • Doyon, Y., J. M. McCammon, J. C. Miller, F. Faraji, C. Ngo, G. E. Katibah, R. Amora, et al.. 2008. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology 26:702–708. doi:10.1038/nbt1409.
  • Dunham, R. A. 2004. Aquaculture and fisheries biotechnology: Genetic approaches. Wallingford, UK: CABI.
  • Edvardsen, R. B., S. Leininger, L. Kleppe, K. O. Skaftnesmo, and A. Wargelius. 2014. Targeted mutagenesis in Atlantic salmon (Salmo salar L.): Using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS ONE 9:e108622. doi:10.1371/journal.pone.0108622.
  • Endal, H. P., G. L. Taranger, S. O. Stefansson, and T. Hansen. 2000. Effects of continuous additional light on growth and sexual maturity in Atlantic salmon, Salmo salar, reared in sea cages. Aquaculture 191:337–349. doi:10.1016/S0044-8486(00)00444-0.
  • FAO Fisheries Department. 2003. Review of the state of world aquaculture. FAO Fisheries Circular No. 886, Rev. 2. Rome: FAO.
  • Fisher, A., J. Volpe, and J. Fisher. 2014. Occupancy dynamics of escaped farmed Atlantic salmon in Canadian Pacific coastal salmon streams: Implications for sustained invasions. Biological Invasions 16(10): 2137–2146.
  • Fjalestad, K. T., T. Moen, and L. Gomezraya. 2003. Prospects for genetic technology in salmon breeding programmes. Aquaculture Research 34:397–406. doi:10.1046/j.1365-2109.2003.00823.x.
  • Fjelldal, P. G., A. Imsland, and T. Hansen. 2012. Vaccination and elevated dietary phosphorus reduces the incidence of early sexual maturation in Atlantic salmon (Salmo salar L.). Aquaculture 364:333–337. doi:10.1016/j.aquaculture.2012.08.033.
  • Fjelldal, P. G., V. Wennevik, I. A. Fleming, T. Hansen, and K. A. Glover. 2014. Triploid (sterile) farmed Atlantic salmon males attempt to spawn with wild females. Aquaculture Environment Interactions 5:155–162. doi:10.3354/aei00102.
  • Fleming, I. 1996. Reproductive strategies of Atlantic salmon: Ecology and evolution. Reviews in Fish Biology and Fisheries 6:379–416. doi:10.1007/BF00164323.
  • Fleming, I. A., K. Hindar, I. B. Mjølnerød, B. Jonsson, T. Balstad, and A. Lamberg. 2000. Lifetime success and interactions of farm salmon invading a native population. Proceedings of the Royal Society B: Biological Sciences 267(1452): 1517–1523.
  • Fox, J. L. 2010. Transgenic salmon inches toward finish line. Nature Biotechnology 28:1141–1142. doi:10.1038/nbt1110-1141a.
  • Fraser, T. W. K., P. G. Fjelldal, T. Hansen, and I. Mayer. 2012. Welfare considerations of triploid fish. Reviews in Fisheries Science 20:192–211. doi:10.1080/10641262.2012.704598.
  • Fraser, T. W. K., P. G. Fjelldal, J. E. Skjaeraasen, T. Hansen, and I. Mayer. 2012. Triploidy alters brain morphology in pre-smolt Atlantic salmon Salmo salar: Possible implications for behaviour. Journal of Fish Biology 81:2199–2212. doi:10.1111/j.1095-8649.2012.03479.x.
  • Fraser, T. W. K., T. Hansen, J. E. Skjæraasen, I. Mayer, F. Sambraus, and P. G. Fjelldal. 2013. The effect of triploidy on the culture performance, deformity prevalence, and heart morphology in Atlantic salmon. Aquaculture 416–417:255–264. doi:10.1016/j.aquaculture.2013.09.034.
  • Fraser, T. W. K., I. Mayer, T. Hansen, T. T. Poppe, J. E. Skjæraasen, E. O. Koppang, and P. G. Fjelldal. 2015. Vaccination and triploidy increase relative heart weight in farmed Atlantic salmon, Salmo salar L. Journal of Fish Diseases 38:151–160. doi:10.1111/jfd.2015.38.issue-2.
  • Fraser, T. W. K., M. A. Vindas, P. G. Fjelldal, S. Winberg, P.-O. Thörnqvist, Ø. Øverli, J.-E. Skjæraasen, T. J. Hansen, and I. Mayer. 2015. Increased reactivity and monoamine dysregulation following stress in triploid Atlantic salmon (Salmo salar). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 185:125–131. doi:10.1016/j.cbpa.2015.04.004.
  • Frewer, L. J., K. Bergmann, M. Brennan, R. Lion, R. Meertens, G. Rowe, M. Siegrist, and C. Vereijken. 2011. Consumer response to novel agri-food technologies: Implications for predicting consumer acceptance of emerging food technologies. Trends in Food Science & Technology 22:442–456. doi:10.1016/j.tifs.2011.05.005.
  • Garant, D., I. A. Fleming, S. Einum, and L. Bernatchez. 2003. Alternative male life-history tactics as potential vehicles for speeding introgression of farm salmon traits into wild populations. Ecology Letters 6:541–549. doi:10.1046/j.1461-0248.2003.00462.x.
  • Gausen, D., and V. Moen. 1991. Large-scale escapes of farmed Atlantic salmon (Salmo salar) into Norwegian rivers threaten natural populations. Canadian Journal of Fisheries and Aquatic Sciences 48:426–428. doi:10.1139/f91-055.
  • Gheyas, A. A., C. S. Haley, D. R. Guy, A. Hamilton, A. E. Tinch, J. C. Mota-Velasco, and J. A. Woolliams. 2010. Effect of a major QTL affecting IPN resistance on production traits in Atlantic salmon. Animal Genetics 41:666–668. doi:10.1111/age.2010.41.issue-6.
  • Gillund, F., R. Dalmo, T. C. Tonheim, T. Seternes, and A. I. Myhr. 2008. DNA vaccination in aquaculture—Expert judgments of impacts on environment and fish health. Aquaculture 284:25–34. doi:10.1016/j.aquaculture.2008.07.044.
  • Gjedrem, T. 2012. Genetic improvement for the development of efficient global aquaculture: A personal opinion review. Aquaculture 344:12–22. doi:10.1016/j.aquaculture.2012.03.003.
  • Gjedrem, T., and M. Baranski. 2009. Selective breeding in aquaculture: An introduction. Dordrecht: Springer Netherlands.
  • Gjedrem, T., N. Robinson, and M. Rye. 2012. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture 350:117–1129. doi:10.1016/j.aquaculture.2012.04.008.
  • Gjerde, B., and A. Korsvoll. 1999. Realized selection differentials for growth rate and early sexual maturity in Atlantic salmon. Abstracts, Aquaculture Europe 99:73–74. Tronheim, Norway, August 7–10.
  • Gjerde, B., H. Simianer, and T. Refstie. 1994. Estimates of genetic and phenotypic parameters for body weight, growth rate and sexual maturity in Atlantic salmon. Livestock Production Science 38:133–143. doi:10.1016/0301-6226(94)90057-4.
  • Glover, K. A., C. Pertoldi, F. Besnier, V. Wennevik, M. Kent, and O. Skaala. 2013. Atlantic salmon populations invaded by farmed escapees: Quantifying genetic introgression with a Bayesian approach and SNPs. BMC Genetics 14:74. doi:10.1186/1471-2156-14-74.
  • Glover, K. A., M. Quintela, V. Wennevik, F. Besnier, A. G. E. Sørvik, and Ø. Skaala. 2012. Three decades of farmed escapees in the wild: A spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway. PLoS ONE 7:e43129. doi:10.1371/journal.pone.0043129.
  • Grimm, H. M., and J. Jaenicke. 2012. What drives patenting and commercialization activity at East German universities? The role of new public policy, institutional environment and individual prior knowledge. The Journal of Technology Transfer 37:454–477. doi:10.1007/s10961-010-9195-2.
  • Grimsrud, K. M., H. M. Nielsen, S. Navrud, and I. Olesen. 2013. Households’ willingness-to-pay for improved fish welfare in breeding programs for farmed Atlantic salmon. Aquaculture 372–375:19–27. doi:10.1016/j.aquaculture.2012.10.009.
  • Gutiérrez, A., K. Lubieniecki, S. Fukui, R. Withler, B. Swift, and W. Davidson. 2014. Detection of quantitative trait loci (QTL) related to grilsing and late sexual maturation in Atlantic salmon (Salmo salar). Marine Biotechnology 16:103–110. doi:10.1007/s10126-013-9530-3.
  • Hansen, L. P. 2006. Migration and survival of farmed Atlantic salmon (Salmo salar L.) released from two Norwegian fish farms. ICES Journal of Marine Science: Journal du Conseil 63:1211–1217. doi:10.1016/j.icesjms.2006.04.022.
  • Harris, J., and D. J. Bird. 2000. Modulation of the fish immune system by hormones. Veterinary Immunology and Immunopathology 77:163–176. doi:10.1016/S0165-2427(00)00235-X.
  • Hayes, B., and Ø. Andersen. 2005. Modern biotechnology and aquaculture. In Selection and breeding programs in aquaculture, ed. T. Gjedrem, 301–317. Dordrecht: Springer.
  • Houston, R. D., C. S. Haley, A. Hamilton, D. R. Guyt, A. E. Tinch, J. B. Taggart, B. J. McAndrew, and S. C. Bishop. 2008. Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics 178:1109–1115. doi:10.1534/genetics.107.082974.
  • Huang, P., A. Xiao, M. Zhou, Z. Zhu, S. Lin, and B. Zhang. 2011. Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology 29:699–700. doi:10.1038/nbt.1939.
  • Hursti, U.-K.-K., M. K. Magnusson, and A. Algers. 2002. Swedish consumers’ opinions about gene technology. British Food Journal 104:860–872. doi:10.1108/00070700210454596.
  • Hviid Nielsen, T. 2012. Holdninger til bioteknologi: Nye vinder? GENialt 3:12–13.
  • Hwang, W. Y., Y. Fu, D. Reyon, M. L. Maeder, S. Q. Tsai, J. D. Sander, R. T. Peterson, J. R. J. Yeh, and J. K. Joung. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology 31:227–229. doi:10.1038/nbt.2501.
  • Johnston, S. E., P. Orell, V. L. Pritchard, M. P. Kent, S. Lien, E. Niemelä, J. Erkinaro, and C. R. Primmer. 2014. Genome-wide SNP analysis reveals a genetic basis for sea-age variation in a wild population of Atlantic salmon (Salmo salar). Molecular Ecology 23:3452–3468. doi:10.1111/mec.12832.
  • Jonsson, B., A. G. Finstad, and N. Jonsson. 2012. Winter temperature and food quality affect age at maturity: An experimental test with Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 69:1817–1826. doi:10.1139/f2012-108.
  • Jonsson, B., and N. Jonsson. 2011. Farmed Atlantic salmon in nature. In Ecology of Atlantic salmon and brown trout, 517–566. Dordrecht: Springer Netherlands.
  • Juan, L., Z. Xiao, Y. Song, Z. Zhijian, J. Jing, Y. Kun, H. Yuna, D. Dongfa, D. Lili, and T. Liuxin. 2015. Safety and immunogenicity of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats. Human Vaccines & Immunotherapeutics 11:2777–2783. doi:10.1080/21645515.2015.1073425.
  • Kaiser, M. 2005. Assessing ethics and animal welfare in animal biotechnology for farm production. Revue Scientifique et Technique—Office International Des Epizooties 24:75–87. doi:10.20506/rst.24.1.1552.
  • Kaiser, M., and E. M. Forsberg. 2001. Assessing fisheries—Using an ethical matrix in a participatory process. Journal of Agricultural & Environmental Ethics 14:191–200. doi:10.1023/A:1011300811590.
  • Kaiser, M., K. Millar, E. Thorstensen, and S. Tomkins. 2007. Developing the ethical matrix as a decision support framework: GM fish as a case study. Journal of Agricultural & Environmental Ethics 20:65–80. doi:10.1007/s10806-006-9023-8.
  • Kapuscinski, A. R., and E. M. Hallerman. 1991. Implications of introduction of transgenic fish into natural ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 48:99–107. doi:10.1139/f91-308.
  • Kupsala, S., P. Jokinen, and M. Vinnari. 2013. Who cares about farmed fish? Citizen perceptions of the welfare and the mental abilities of fish. Journal of Agricultural and Environmental Ethics 26:119–135. doi:10.1007/s10806-011-9369-4.
  • Le Curieux-Belfond, O., L. Vandelac, J. Caron, and G. E. Seralini. 2009. Factors to consider before production and commercialization of aquatic genetically modified organisms: The case of transgenic salmon. Environmental Science & Policy 12:170–189. doi:10.1016/j.envsci.2008.10.001.
  • Leggatt, R. A., C. A. Biagi, J. L. Smith, and R. H. Devlin. 2012. Growth of growth hormone transgenic coho salmon Oncorhynchus kisutch is influenced by construct promoter type and family line. Aquaculture 356–357:193–199. doi:10.1016/j.aquaculture.2012.05.016.
  • Leggatt, R. A., C. J. Brauner, G. K. Iwama, and R. H. Devlin. 2007. The glutathione antioxidant system is enhanced in growth hormone transgenic coho salmon (Oncorhynchus kisutch). Journal of Comparative Physiology B 177:413–422. doi:10.1007/s00360-006-0140-5.
  • Lokman, P. M., and J. E. Symonds. 2014. Molecular and biochemical tricks of the research trade: -omics approaches in finfish aquaculture. New Zealand Journal of Marine and Freshwater Research 48:492–505. doi:10.1080/00288330.2014.928333.
  • Lund, V., C. M. Mejdell, H. Röcklinsberg, R. Anthony, and T. Håstein. 2007. Expanding the moral circle: Farmed fish as objects of moral concern. Diseases of Aquatic Organisms 75:109–118. doi:10.3354/dao075109.
  • Magnus, T., R. Almås, and R. Heggem. 2009. Spis ikke, med midre helsa eller miljøet blir bedre! Om utviklingen i norske forbrukeres holdninger til genmodifisert mat. Etikk I Praksis 3:89–110.
  • McGinnity, P., P. Prodöhl, A. Ferguson, R. Hynes, N. Ó Maoiléidigh, N. Baker, D. Cotter, et al. 2003. Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proceedings of the Royal Society B: Biological Sciences 270:2443–2450.
  • Melamed, P., Z. Gong, G. Fletcher, and C. L. Hew. 2002. The potential impact of modern biotechnology on fish aquaculture. Aquaculture 204:255–269. doi:10.1016/S0044-8486(01)00838-9.
  • Melo, M. C., E. Andersson, P. G. Fjelldal, J. Bogerd, L. R. França, G. L. Taranger, and R. W. Schulz. 2014. Salinity and photoperiod modulate pubertal development in Atlantic salmon (Salmo salar). Journal of Endocrinology 220:319–332. doi:10.1530/JOE-13-0240.
  • Meng, X., M. B. Noyes, L. J. Zhu, N. D. Lawson, and S. A. Wolfe. 2008. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature Biotechnology 26:695–701. doi:10.1038/nbt1398.
  • Mepham, B. 2000. A framework for the ethical analysis of novel foods: The ethical matrix. Journal of Agricultural & Environmental Ethics 12:165–176. doi:10.1023/A:1009542714497.
  • Mepham, B. 2006. The ethical matrix as a decision-making tool, with specific reference to animal sentience. In Animals, ethics, and trade: The challenge of animal sentience, ed. J. Turner and J. D’Silva, 134–145. London: Earthscan.
  • Moen, T., M. Baranski, A. K. Sonesson, and S. Kjoglum. 2009. Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): Population-level associations between markers and trait. BMC Genomics 10(1): 368–381.
  • Mori, T., I. Hiraka, Y. Kurata, H. Kawachi, N. Mano, R. H. Devlin, H. Nagoya, and K. Araki. 2007. Changes in hepatic gene expression related to innate immunity, growth and iron metabolism in GH-transgenic amago salmon (Oncorhynchus masou) by cDNA subtraction and microarray analysis, and serum lysozyme activity. General and Comparative Endocrinology 151:42–54. doi:10.1016/j.ygcen.2006.11.012.
  • Muir, W. M., and R. D. Howard. 1999. Possible ecological risks of transgenic organism release when transgenes affect mating success: Sexual selection and the Trojan gene hypothesis. Proceedings of the National Academy of Sciences 96:13853–13856. doi:10.1073/pnas.96.24.13853.
  • Muir, W. M., and R. D. Howard. 2001. Fitness components and ecological risk of transgenic release: A model using Japanese medaka (Oryzias latipes). The American Naturalist 158:1–16. doi:10.1086/320860.
  • Muir, W. M., and R. D. Howard. 2002. Assessment of possible ecological risks and hazards of transgenic fish with implications for other sexually reproducing organisms. Transgenic Research 11:101–114. doi:10.1023/A:1015203812200.
  • Myskja, B. K., and A. I. Myhr. 2012. Changing an iconic species by biotechnology: The case of Norwegian salmon. In Climate change and sustainable development, ed. T. Potthast and S. Meisch, 315–320. Wageningen, Netherlands: Wageningen Academic Publishers.
  • Naylor, R., K. Hindar, I. A. Fleming, R. Goldburg, S. Williams, J. Volpe, F. Whoriskey, J. Eagle, D. Kelso, and M. Mangel. 2005. Fugitive salmon: Assessing the risks of escaped fish from net-pen aquaculture. BioScience 55:427–437. doi:10.1641/0006-3568(2005)055[0427:FSATRO]2.0.CO;2.
  • Oberdörster, E., and A. O. Cheek. 2001. Gender benders at the beach: Endocrine disruption in marine and estuarine organisms. Environmental Toxicology and Chemistry 20:23–36. doi:10.1002/etc.v20:1.
  • Olesen, I., G. K. Rosendal, M. Rye, M. Walløe Tvedt, and H. B. Bentsen. 2008. Who shall own the genes of farmed fish? In Global privatization and its impact, eds. I. J. Hagen, and T. S. Halvorsen, 103–113. New York: Nova Science Publishers.
  • Olesen, I., G. K. Rosendal, M. W. Tvedt, M. Bryde, and H. B. Bentsen. 2007. Access to and protection of aquaculture genetic resources—Structures and strategies in Norwegian aquaculture. Aquaculture 272:S47–S61. doi:10.1016/j.aquaculture.2007.08.012.
  • Oppedal, F., T. Dempster, and L. H. Stien. 2011. Environmental drivers of Atlantic salmon behaviour in sea-cages: A review. Aquaculture 311:1–18. doi:10.1016/j.aquaculture.2010.11.020.
  • Oppedal, F., G. L. Taranger, and T. Hansen. 2003. Growth performance and sexual maturation in diploid and triploid Atlantic salmon (Salmo salar L.) in seawater tanks exposed to continuous light or simulated natural photoperiod. Aquaculture 215:145–162. doi:10.1016/S0044-8486(02)00223-5.
  • Ormandy, E. H., J. Dale, and G. Griffin. 2011. Genetic engineering of animals: Ethical issues, including welfare concerns. The Canadian Veterinary Journal 52:544–550.
  • Pankhurst, N. W., and H. R. King. 2010. Temperature and salmonid reproduction: Implications for aquaculture. Journal of Fish Biology 76:69–85. doi:10.1111/jfb.2010.76.issue-1.
  • Pankhurst, N. W., and P. L. Munday. 2011. Effects of climate change on fish reproduction and early life history stages. Marine and Freshwater Research 62:1015–1026. doi:10.1071/MF10269.
  • Panserat, S., B. S. Kamalam, J. Fournier, E. Plagnes-Juan, K. Woodward, and R. H. Devlin. 2014. Glucose metabolic gene expression in growth hormone transgenic coho salmon. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 170:38–45. doi:10.1016/j.cbpa.2014.01.013.
  • Pereiro, P., S. Dios, S. Boltaña, J. Coll, A. Estepa, S. Mackenzie, B. Novoa, and A. Figueras. 2014. Transcriptome profiles associated to VHSV infection or DNA vaccination in turbot (Scophthalmus maximus). PLoS ONE 9:e104509. doi:10.1371/journal.pone.0104509.
  • Persson, P., K. Sundell, B. T. Björnsson, and H. Lundqvist. 1998. Calcium metabolism and osmoregulation during sexual maturation of river running Atlantic salmon. Journal of Fish Biology 52:334–349. doi:10.1111/j.1095-8649.1998.tb00801.x.
  • Piferrer, F., A. Beaumont, J.-C. Falguière, M. Flajšhans, P. Haffray, and L. Colombo. 2009. Polyploid fish and shellfish: Production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293:125–156. doi:10.1016/j.aquaculture.2009.04.036.
  • Pol, J., N. Bloy, F. Obrist, A. Eggermont, J. Galon, W. Hervé Fridman, I. Cremer, L. Zitvogel, G. Kroemer, and L. Galluzzi. 2014. Trial watch. OncoImmunology 3:e28185. doi:10.4161/onci.28185.
  • Porter, M. J. R., N. J. Duncan, D. Mitchell, and N. R. Bromagea. 1999. The use of cage lighting to reduce plasma melatonin in Atlantic salmon (Salmo salar) and its effects on the inhibition of grilsing. Aquaculture 176:237–244. doi:10.1016/S0044-8486(99)00113-1.
  • Rasmussen, R. S., and M. T. Morrissey. 2007. Biotechnology in aquaculture: Transgenics and polyploidy. Comprehensive Reviews in Food Science and Food Safety 6:2–16. doi:10.1111/crfs.2007.6.issue-1.
  • Robertsen, B. 2011. Can we get the upper hand on viral diseases in aquaculture of Atlantic salmon? Aquaculture Research 42:125–131. doi:10.1111/are.2011.42.issue-s1.
  • Rodrigues, P. M., T. S. Silva, J. Dias, and F. Jessen. 2012. Proteomics in aquaculture: Applications and trends. Journal of Proteomics 75:4325–4345. doi:10.1016/j.jprot.2012.03.042.
  • Rodríguez, E. M., D. A. Medesani, and M. Fingerman. 2007. Endocrine disruption in crustaceans due to pollutants: A review. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 146:661–671. doi:10.1016/j.cbpa.2006.04.030.
  • Rosendal, K. G. 2006. Balancing access and benefit sharing and legal protection of innovations from bioprospecting: Impacts on conservation of biodiversity. The Journal of Environment & Development 15:428–447. doi:10.1177/1070496506294799.
  • Rosendal, K. G., I. Olesen, H. B. Bentsen, M. W. Tvedt, and M. Bryde. 2006. Access to and legal protection of aquaculture genetic resources—Norwegian perspectives. The Journal of World Intellectual Property 9:392–412. doi:10.1111/j.1422-2213.2006.00283.x.
  • Serreze, M. C., and R. G. Barry. 2011. Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change 77:85–96. doi:10.1016/j.gloplacha.2011.03.004.
  • Skaala, Ø., K. A. Glover, B. T. Barlaup, T. Svåsand, F. Besnier, M. M. Hansen, and R. Borgstrøm. 2012. Performance of farmed, hybrid, and wild Atlantic salmon (Salmo salar) families in a natural river environment. Canadian Journal of Fisheries and Aquatic Sciences 69:1994–2006. doi:10.1139/f2012-118.
  • Skaala, Ø., B. Høyheim, K. Glover, and G. Dahle. 2004. Microsatellite analysis in domesticated and wild Atlantic salmon (Salmo salar L.): Allelic diversity and identification of individuals. Aquaculture 240:131–143. doi:10.1016/j.aquaculture.2004.07.009.
  • Skilbrei, O. T., M. Heino, and T. Svåsand. 2015. Using simulated escape events to assess the annual numbers and destinies of escaped farmed Atlantic salmon of different life stages from farm sites in Norway. ICES Journal of Marine Science: Journal du Conseil 72:670–685. doi:10.1093/icesjms/fsu133.
  • Skilbrei, O. T., O. F. Skulstad, and T. Hansen. 2014. The production regime influences the migratory behaviour of escaped farmed Atlantic salmon. Aquaculture 424–425:146–150. doi:10.1016/j.aquaculture.2013.12.019.
  • Small, S. A., and T. J. Benfey. 1987. Cell size in triploid salmon. Journal of Experimental Zoology 241:339–342. doi:10.1002/(ISSN)1097-010X.
  • Smith, M. D., F. Asche, A. G. Guttormsen, and J. B. Wiener. 2010. Genetically modified salmon and full impact assessment. Science 330:1052–1053. doi:10.1126/science.1197769.
  • Sørum, U., and B. Damsgård. 2004. Effects of anaesthetisation and vaccination on feed intake and growth in Atlantic salmon (Salmo salar L.). Aquaculture 232:333–341. doi:10.1016/S0044-8486(03)00529-5.
  • Stien, L. H., M. B. M. Bracke, O. Folkedal, J. Nilsson, F. Oppedal, T. Torgersen, S. Kittilsen, et al. 2013. Salmon welfare index model (SWIM 1.0): A semantic model for overall welfare assessment of caged Atlantic salmon: Review of the selected welfare indicators and model presentation. Reviews in Aquaculture 5:33–57. doi:10.1111/j.1753-5131.2012.01083.x.
  • Sundt-Hansen, L., L. F. Sundström, S. Einum, K. Hindar, I. A. Fleming, and R. H. Devlin. 2007. Genetically enhanced growth causes increased mortality in hypoxic environments. Biology Letters 3(2): 165–168.
  • Svåsand, T., K. Glover, M. Heino, O. Skilbrei, Ø Skaala, V. Wennevik. 2014. Risikovurdering norsk fiskeoppdrett 2013. Fisken Og Havet, eds. G. L. Taranger, T. Svåsand, B. O. Kvamme, T. Kristiansen, K. Kroon Boxaspen, 2 (6):75–96. Bergen, Norway: Norwegian Institute of Marine Research.
  • Taranger, G. L., M. Carrillo, R. W. Schulz, P. Fontaine, S. Zanuy, A. Felip, F. A. Weltzien, et al. 2010. Control of puberty in farmed fish. General and Comparative Endocrinology 165:483–515. doi:10.1016/j.ygcen.2009.05.004.
  • Taranger, G. L., C. Haux, S. O. Stefansson, B. Björn Thrandur, B. T. Walther, and T. Hansen. 1998. Abrupt changes in photoperiod affect age at maturity, timing of ovulation and plasma testosterone and oestradiol-17β profiles in Atlantic salmon, Salmo salar. Aquaculture 162:85–98. doi:10.1016/S0044-8486(98)00168-9.
  • Taranger, G. L., Ø. Karlsen, R. J. Bannister, K. A. Glover, V. Husa, E. Karlsbakk, B. O. Kvamme, et al. 2015. Risk assessment of the environmental impact of Norwegian Atlantic salmon farming. ICES Journal of Marine Science: Journal du Conseil 72:997–1021. doi:10.1093/icesjms/fsu132.
  • Taranger, G. L., E. Vikingstad, U. Klenke, I. Mayer, S. O. Stefansson, B. Norberg, T. Hansen, Y. Zohar, and E. Andersson. 2003. Effects of photoperiod, temperature and GnRHa treatment on the reproductive physiology of Atlantic salmon (Salmo salar L.) broodstock. Fish Physiology and Biochemistry 28:403–406. doi:10.1023/B:FISH.0000030606.00772.8a.
  • Taylor, J. F., F. Sambraus, J. Mota-Velasco, D. R. Guy, A. Hamilton, D. Hunter, D. Corrigan, and H. Migaud. 2013. Ploidy and family effects on Atlantic salmon (Salmo salar) growth, deformity and harvest quality during a full commercial production cycle. Aquaculture 410–411:41–50. doi:10.1016/j.aquaculture.2013.06.004.
  • Thodesen, J., and T. Gjedrem 2006. Breeding programs on Atlantic salmon in Norway—Lessons learned. In Development of aquatic animal genetic improvement and dissemination programs: Current status and action plans. WorldFish Center Conference Proceedings 73, ed. R. W. Ponzoni, B. O. Acosta, and A. G. Ponniah, 22–26. Penang, Malaysia: WorldFish Center.
  • Thorpe, J. E., M. Mangel, N. Metcalfe, and F. Huntingford. 1998. Modelling the proximate basis of salmonid life-history variation, with application to Atlantic salmon, Salmo salar L. Evolutionary Ecology 12:581–599. doi:10.1023/A:1022351814644.
  • Thorpe, J. E., R. I. G. Morgan, C. Talbot, and M. S. Miles. 1983. Inheritance of developmental rates in Atlantic salmon, Salmo salar L. Aquaculture 33:119–128. doi:10.1016/0044-8486(83)90392-7.
  • Thorpe, J. E., C. Talbot, M. S. Miles, and D. S. Keay. 1990. Control of maturation in cultured Atlantic salmon, Salmo salar, in pumped seawater tanks, by restricting food-intake. Aquaculture 86:315–326. doi:10.1016/0044-8486(90)90122-4.
  • Torrissen, O., S. Jones, F. Asche, A. Guttormsen, O. T. Skilbrei, F. Nilsen, T. E. Horsberg, and D. Jackson. 2013. Salmon lice—Impact on wild salmonids and salmon aquaculture. Journal of Fish Diseases 36:171–194. doi:10.1111/jfd.2013.36.issue-3.
  • Trombley, S., and M. Schmitz. 2013. Leptin in fish: Possible role in sexual maturation in male Atlantic salmon. Fish Physiology and Biochemistry 39:103–106. doi:10.1007/s10695-012-9731-0.
  • Vainikka, A., R. Huusko, P. Hyvarinen, P. K. Korhonen, T. Laaksonen, J. Koskela, J. Vielma, H. Hirvonen, and M. Salminen. 2012. Food restriction prior to release reduces precocious maturity and improves migration tendency of Atlantic salmon (Salmo salar) smolts. Canadian Journal of Fisheries and Aquatic Sciences 69:1981–1993. doi:10.1139/f2012-119.
  • Van Eenennaam, A. L., and W. M. Muir. 2011. Transgenic salmon: A final leap to the grocery shelf? Nature Biotechnology 29:706–710. doi:10.1038/nbt.1938.
  • Vandersteen Tymchuk, W. E., M. V. Abrahams, and R. H. Devlin. 2005. Competitive ability and mortality of growth-enhanced transgenic Coho salmon fry and parr when foraging for food. Transactions of the American Fisheries Society 134:381–389. doi:10.1577/T04-084.1.
  • Verspoor, E., M. Donaghy, and D. Knox. 2006. The disruption of small scale genetic structuring of Atlantic salmon within a river by farm escapes. Journal of Fish Biology 69:246–246.
  • Vikingstad, E., E. Andersson, B. Norberg, I. Mayer, U. Klenke, Y. Zohar, S. Stefansson, and G. Taranger. 2008. The combined effects of temperature and GnRHa treatment on the final stages of sexual maturation in Atlantic salmon (Salmo salar L.) females. Fish Physiology and Biochemistry 34:289–298. doi:10.1007/s10695-007-9187-9.
  • Vries, R. 2006. Genetic engineering and the integrity of animals. Journal of Agricultural and Environmental Ethics 19:469–493. doi:10.1007/s10806-006-9004-y.
  • Wargelius, A., S. Leininger, K. O. Skaftnesmo, L. Kleppe, E. Andersson, G. L. Taranger, R. W. Schulz, and R. B. Edvardsen. 2016. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Scientific Reports 6:21284. doi:10.1038/srep21284.
  • Weir, L. K., J. A. Hutchings, I. A. Fleming, and S. Einum. 2004. Dominance relationships and behavioural correlates of individual spawning success in farmed and wild male Atlantic salmon, Salmo salar. Journal of Animal Ecology 73:1069–1079. doi:10.1111/jae.2004.73.issue-6.
  • Wild, V., H. Simianer, H. M. Gjøen, and B. Gjerde. 1994. Genetic parameters and genotype × environment interaction for early sexual maturity in Atlantic salmon (Salmo salar). Aquaculture 128:51–65. doi:10.1016/0044-8486(94)90101-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.