359
Views
1
CrossRef citations to date
0
Altmetric
Review

Genetic selection for improved disease resistance in aquaculture with special reference to shrimp and tilapia breeding programs in Egypt

ORCID Icon

References

  • Aaen, S. M., K. O. Helgesen, M. J. Bakke, K. Kaur, and T. E. Horsberg. 2015. Drug resistance in sea lice: A threat to salmonid aquaculture. Trends in Parasitology 31:72–81. doi:10.1016/j.pt.2014.12.006.
  • Adams, A., K. D. Thompson, and R. J. Roberts. 1997. Fish vaccines. In Vaccine manual. The production and quality control of veterinary vaccines for use in developing countries, ed. N. Mowat and M. Rweyemamu, 127–42. Rome: Food and Agriculture Org. UN.
  • Anderson, D. P. 1992. Immunostimulants, adjuvants and vaccine carriers in fish: Application to aquaculture. Annual Review of Fish Diseases 2:281–307. doi:10.1016/0959-8030(92)90067-8.
  • Argue, B. J., S. M. Arce, J. M. Lotz, and S. M. Moss. 2002. Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura Syndrome Virus. Aquaculture 204:447–60. doi:10.1016/S0044-8486(01)00830-4.
  • Bailey, J. K. 1986. Differential survival among full sib Atlantic salmon (Salmo salar L.) families exposed to furunculosis. Sal. Genet. Res. Prog. Report Series, Tech Rept. No. 58. New Brunswick, Canada: North American Salmon Research Center.
  • Balfry, S. K., G. K. Iwama, and T. P. T. Evelyn. 1994. Components of the non-specific immune system in coho salmon associated with strain differences in innate disease resistance. Developmental and Comparative Immunology 18:S82.
  • Barg, U., and C. R. Lavilla-Pitogo. 1996. The use of chemicals in aquaculture: A brief summary of two international expert meetings. FAO Aquaculture Newsletter 14:12–13.
  • Barroso, R. M., P. A. Wheeler, S. E. LaPatra, R. E. Drew, and G. H. Thorgaard. 2008. QTL for IHNV resistance and growth identified in a rainbouw trout (Onchorhynchus mykiss)×Yellowstone cutthroat (Onchorhynchus clarki bouvieri) trout cross. Aquaculture 277 (3):156–63. doi:10.1016/j.aquaculture.2008.03.001.
  • Biozzi, G., D. Mouton, A. M. Heumann, and Y. Bouthillier. 1982. Genetic regulation of immune responsiveness in relation to resistance against infectious diseases. Procceeding 2nd World Congress. Genetics Applied to Livestock Production 5:150–63.
  • Biozzi, G., D. Mouton, O. A. Sant’Anna, H. C. Passos, M. Gennari, M. H. Reis, V. C. A. Ferreira, A. M. Heumann, Y. Bouthillier, O. M. Ibanez, et al. 1979. Genetics of immunoresponsiveness to natural antigens in the mouse. Current Topics in Microbiology and Immunology 85:31–98.
  • Biozzi, G., D. Mouton, C. Stiffel, and Y. Bouthillier. 1984. A major role of the macrophage in quantitative genetic regulation of immunoreponsiveness and antiinfectious immunity. Advances in Immunology 36:189–233.
  • Bishop, S. C., and J. A. Woolliams. 2010. On the genetic interpretation of disease data. PLoS One 5:e8940. doi:10.1371/journal.pone.0008940.
  • Bishop, S. C., and J. A. Woolliams. 2014. Genomics and disease resistance studies in livestock. Livestock Science 166:190–98. doi:10.1016/j.livsci.2014.04.034.
  • Bolstad, G. H., C. Pélabon, L. K. Larsen, I. A. Fleming, A. Viken, and G. Rosenqvist. 2012. The effect of purging on sexually selected traits through antagonistic pleiotropy with survival. Ecology and Evolution 2 (6):1181–94. doi:10.1002/ece3.246.
  • Boman, H. G. 1995. Peptide antibiotics and their role in innate immunity. Annual Review of Immunology 13:61–92. doi:10.1146/annurev.iy.13.040195.000425.
  • Bricknell, I., and R. A. Dalmo. 2005. The use of immunostimulants in fish larval aquaculture. Fish and Shellfish Immunology 19:457–72. doi:10.1016/j.fsi.2005.03.008.
  • Brinkhoff, T., G. Bach, T. Heidorn, L. Liang, A. Schlingloff, and M. Simon. 2004. Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Applied and Environmental Microbiology 70 (4):2560–65. doi:10.1128/AEM.70.4.2560-2565.2003.
  • Brun, E., T. Poppe, A. Skrudland, and J. Jarp. 2003. Cardiomyopathy syndrome in farmed Atlantic salmon Salmo salar: Occurrenceand direct financial losses for Norwegian aquaculture. Diseases of Aquatic Organisms 56:241–47. doi:10.3354/dao056241.
  • Brunt, J., and B. Austin. 2005. Use of a probiotic to control lactococcosis and streptococcosis in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases 28:693–701. doi:10.1111/jfd.2005.28.issue-12.
  • Castillo-Juárez, H., G. R. Campos-Montes, A. Caballero-Zamora, and H. H. Montaldo. 2015. Genetic improvement of Pacific white shrimp [Penaeus (Litopenaeus) vannamei]: Perspectives for genomic selection. Frontiers in Genetics 6:93. doi:10.3389/fgene.2015.00093.
  • Chang, C. I., and W. Y. Liu. 2002. An evaluation of two probiotic bacterial strains, Enterococcus faecium SF68 and Bacillus toyoi, for reducing edwardsiellosis in cultured European eel, (Anguilla anguilla L.). Journal of Fish Diseases 25:311–15. doi:10.1046/j.1365-2761.2002.00365.x.
  • Chevassus, B., and M. Dorson. 1990. Genetics of resistance to disease in fishes. Aquaculture 85:83–107. doi:10.1016/0044-8486(90)90009-C.
  • Chiayvareesajja, J., K. H. Røed, A. E. Eknath, J. C. Danting, M. P. D. Vera, and H. B. Bentsen. 1999. Genetic variation in lytic activities of blood serum from Nile tilapia and genetic associations with survival and body weight. Aquaculture 175:49–62. doi:10.1016/S0044-8486(99)00034-4.
  • Cipriano, R. C., and C. M. Heartwell. 1986. Susceptibility of salmonids to furunculosis: Differences between serum and mucus response against. Aeromonas Salmoncida. Transactions of the American Fisheries Society 115:83–88. doi:10.1577/1548-8659(1986)115<83:SOSTF>2.0.CO;2.
  • Cock, J., T. Gitterle, M. Salazar, and R. Morten. 2009. Breeding for disease resistance of Penaeid shrimps. Aquaculture 286:1–11. doi:10.1016/j.aquaculture.2008.09.011.
  • Cook, M. T., P. J. Hayball, W. Hutchinson, B. F. Nowak, and J. D. Hayball. 2003. Administration of a commercial immunostimulant preparation, Ecoactiva as a feed supplement enhances macrophase respiratory burst and the growth rate of snapper (Pagrus auratus), Sparidae (Bloch and Schneider) in winter. Fish and Shellfish Immunology 14 (4):333–45. doi:10.1006/fsim.2002.0441.
  • Corcoran, B. M., R. P. Ross, G. F. Fitzgerald, and C. Stanton. 2004. Comparative survival o f probiotic lactobacilli spray-dried in the presence of prebiotic substances. Journal of Applied Microbiology 96:1024–39. doi:10.1111/jam.2004.96.issue-5.
  • Costello, M. J. 2009. The global economic cost of sea lice to the salmonid farming industry. Journal of Fish Diseases 32:115–18. doi:10.1111/jfd.2009.32.issue-1.
  • Dégremont, L., M. Nourry, and E. Maurouard. 2015. Mass selection for survival and resistance to OsHV-1 infection in Crassostrea gigas spat in field conditions: Response to selection after four generations. Aquaculture 446:111–21. doi:10.1016/j.aquaculture.2015.04.029.
  • Doeschl-Wilson, A. B., S. C. Bishop, I. Kyriazakis, and B. Villanueva. 2012. Novel methods for quantifying individual host response to infectious pathogens for genetic analyses. Frontiers in Genetics 3:266. doi:10.3389/fgene.2012.00266.
  • Dunham, R. A. 2011. Aquaculture and fisheries biotechnology: Genetic approaches. Wallingford, UK: CABI.
  • Dunham, R. A., G. W. Warr, A. Nichol, P. L. Duncan, B. Argue, D. Middleton, and H. Kucuktas. 2002. Enhanced bacterial disease resistance of transgenic channel catfish (Ictalurus punctatus) possessing Cecropin genes. Marine Biotechnology 4:338–44. doi:10.1007/s10126-002-0024-y.
  • Ehlinger, N. F. 1964. Selective breeding of trout for resistance to furunculosis. New York Fish and Game Journal 11 (2):78–90.
  • Ehlinger, N. F. 1977. Selective breeding of trout for resistance to furunculosis. New York Fish and Game Journal 24:25–36.
  • Elaswad, A., and R. Dunham. 2017. Disease reduction in aquaculture with genetic and genomic technology: Current and future approaches. Reviews in Aquaculture 1–23. doi:10.1111/raq.12205.
  • Ellis, A. E. 1982. Differences between the immune mechanisms of fish and higher vertebrates. In Microbial diseases of fish, ed. R. J. Roberts, 1–29. London: Academic Press.
  • European Council. 2001a. Directive 2001/82/EC of the European parliament and of the council of 6th November 2001 on the community code relating to veterinary medicinal products. Official Journal of the European Communities, L 311 2004: 1–66.
  • European Council. 2001b. EC Enterprise Directorate General. notice to applicants: Vol 6B presentation and content of the dossier Part II G and H: Guidance on data relating to the environmental risk assessment for products containing or consisting of genetically modified organisms. European Council, Brussels, Belgium. 2001.
  • European Council. 2001c. EC health and consumer protection directorate General. Guidelines on the assessment of additives in animal nutrition: Additives other than micro-organisms and enzymes. European Council, Brussels, Belgium. 2001.
  • Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to quantitative genetics. 4th ed. Longman Group, London.
  • Fange, R., G. Lundblad, and J. Lind. 1976. Lysozyme and chitinase in blood and lymphomyeloid tissues of marine fish. Marine Biology 36:277–82. doi:10.1007/BF00389289.
  • FAO. 1996. Parasites, infections and diseases of fishes in Africa. An update CIFA Technical Paper. No.31, Rome, FAO, 220p.
  • Fernández, J., M. Á. Toro, A. K. Sonesson, and B. Villanueva. 2014. Optimizing the creation of base populations for aquaculture breeding programs using phenotypic and genomic data and its consequences on genetic progress. Frontiers in Genetics 5:414. doi:10.3389/fgene.2014.00414.
  • Fevolden, S. E., T. Refstie, and K. H. Røed. 1991. Selection for high and low cortisol stress response in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Aquaculture 95:53–65. doi:10.1016/0044-8486(91)90072-F.
  • Fevolden, S. E., T. Refstie, and K. H. Røed. 1992. Disease resistance in rainbow trout (Oncorhynchus mykiss) selected for stress response. Aquaculture 104:19–29. doi:10.1016/0044-8486(92)90134-7.
  • Fevolden, S. E., K. H. Røed, K. T. Fjalestad, and J. Stien. 1999. levels of lysozyme and cortisol in adult rainbow trout: Heritabilities and genetic correlations. Journal of Fish Biology 54 (4):900–10. doi:10.1111/j.1095-8649.1999.tb02040.x.
  • Fisher, R. A. 1930. The genetical theory of natural selection, 306. Oxford Clarendon Press. Oxford OX 2 6DP.
  • Fjalestad, K. T., T. Gjedrem, and B. Gjerde. 1993. Genetic improvement of disease resistance in fish: An overview. Aquaculture 111:65–74. doi:10.1016/0044-8486(93)90025-T.
  • Fjalestad, K. T., T. Moen, and L. Gomez-Raya. 2003. Prospects for genetic technology in salmon breeding programmes. Aquaculture Research 34 (5):397–406. doi:10.1046/j.1365-2109.2003.00823.x.
  • Fletcher, T. C., and A. White. 1976. The lysozyme of the plaice (Pleuronectes platessa L.). Comparative Biochemistry and Physiology 55B:207–10.
  • Fuji, K., K. Kobayashi, O. Hasegawa, M. R. M. Coimbra, T. Sakamoto, and N. Okamoto. 2006. Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture 254:203–10. doi:10.1016/j.aquaculture.2005.11.024.
  • Funk, V. A., M. Raap, K. Sojonky, S. Jones, J. Robinson, C. Falkenberg, and K. M. Miller. 2007. Development and validation of an RNA- and DNA-based quantitative PCR assay for determination of Kudoa thyrsites infection levels in Atlantic salmon Salmo salar. Diseases of Aquatic Organisms 75:239−249. doi:10.3354/dao075239.
  • Gibson, L. F., J. Woodworth, and A. M. George. 1998. Probiotic activity of Aeromonas media on the Pacific oyster (Crassostrea gigas), when challenged with Vibrio tubiashii. Aquaculture 169:111–20. doi:10.1016/S0044-8486(98)00369-X.
  • Gitterle, T., J. Ødegård, B. Gjerde, M. Rye, and R. Salte. 2006. Genetic parameters and accuracy of selection for resistance to White Spot Syndrome Virus (WSSV) in Penaeus (Litopenaeus vannamei) using different statistical models. Aquaculture 251:210–18. doi:10.1016/j.aquaculture.2005.06.008.
  • Gjedrem, T. 1997a. Breeding to raise resistance. In Furunculosis. Multidisciplinary fish disease research, ed. E. M. Bernoth, A. E. Ellis, P. J. Midtlyng, G. Olivier, and P. Smith, 405–18. London: Academic Press. 1997.
  • Gjedrem, T. 1997b. Selective breeding to improve aquaculture production. World Aquaculture 28 (1):33–45.
  • Gjedrem, T. 1998. Developments in fish breeding and genetics. Acta Agriculturae Scandinavic, A Suppl 28:19–26.
  • Gjedrem, T. 2005. Selection and breeding programs in aquaculture, 364. Netherlands: Springer. ISBN-10 1-4020-3341-9.
  • Gjedrem, T. 2010. The first family-based breeding program in aquaculture. Reviews in Aquaculture 2:2–15. doi:10.1111/j.1753-5131.2010.01011.x.
  • Gjedrem, T. 2015. Disease resistant fish and shellfish are within reach: A review. Journal of Marine Science and Engineering 3:146–53. doi:10.3390/jmse3010146.
  • Gjedrem, T., and D. Aulstad. 1974. Selection experiments with salmon: I. Differences in resistance to vibrio disease of salmon parr (Salmo salar). Aquaculture 3 (5):l–59. doi:10.1016/0044-8486(74)90098-2.
  • Gjedrem, T., and M. Baranski. 2009. Selective breeding in aquaculture: An introduction. Dordrecht: Springer Netherlands.
  • Gjedrem, T., and H. M. Gjøen. 1995. Genetic variation in susceptibility of Atlantic salmon (Salmo salar L.) to furunculosis, BKD and cold water vibriosis. Aquaculture Research 26:129–34. doi:10.1111/j.1365-2109.1995.tb00892.x.
  • Gjedrem, T., H. M. Gjøen, and B. Gjerde. 1991a. Genetic origin of Norwegian farmed Atlantic salmon. Aquaculture 98:41–50. doi:10.1016/0044-8486(91)90369-I.
  • Gjedrem, T., N. Robinson, and M. Rye. 2012. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture 350–353:117–29. doi:10.1016/j.aquaculture.2012.04.008.
  • Gjedrem, T., and M. Rye. 2016. Selection response in fish and shellfish: A review. Reviews in Aquaculture 2016:1–12. doi:10.1111/raq.12154.
  • Gjedrem, T., R. Salte, and H. M. Gjøen. 1991b. Genetic variation in susceptibility of Atlantic salmon to furunculosis. Aquaculture 97:1–6. doi:10.1016/0044-8486(91)90274-B.
  • Gjerde, B. 2006. State of the art in selective breeding of aquacultured species. Israeli. Journal of Aquaculture - Bamidgeh 58 (4):230.
  • Gjerde, B., B. F. Terjesen, Y. Barr, I. Lein, and I. Thorland. 2004. Genetic variation for juvenile growth and survival in Atlantic cod (Gadus morhua). Aquaculture 236:167–77. doi:10.1016/j.aquaculture.2004.03.004.
  • Gjøen, H. M., and H. B. Bentsen. 1997b. Past, present, and future of genetic improvement in salmon aquaculture. Ices Journal of Marine Science 54:1009–14. doi:10.1016/S1054-3139(97)80005-7.
  • Gjøen, H. M., T. Refstie, O. Ulla, and B. Gjerde. 1997a. Genetic correlations between survival of Atlantic salmon (Salmo salar L.) in challenge and field tests. Aquaculture 158:277–88. doi:10.1016/S0044-8486(97)00203-2.
  • Glover, K. A., T. Aasmundstad, F. Nilsen, A. Storset, and Ø. Skaala. 2005. Variation of Atlantic salmon families (Salmo salar L.) in susceptibility to the sea lice Lepeophtherius salmoni and Caligus elongates. Aquaculture 245:19–30. doi:10.1016/j.aquaculture.2004.11.047.
  • Gonen, S., M. Baranski, I. Thorland, A. Norris, H. Grove, P. Arnesen, H. Bakke, S. Lien, S. C. Bishop, and R. D. Houston. 2015. Mapping and validation of a major QTL affecting resistance to pancreas disease (salmonid alphavirus) in Atlantic salmon (Salmo salar). Heredity (Edinburgh) 115:405–14. doi:10.1038/hdy.2015.37.
  • Grimholt, U., S. Larsen, R. Nordmo, P. Midtlyng, S. Kjoeglum, A. Storset, S. Saebø, and R. J. M. Stet. 2003. MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics 55:210–19. doi:10.1007/s00251-003-0567-8.
  • Guy, D. R., S. C. Bishop, S. Brotherstone, A. Hamilton, R. J. Roberts, B. J. McAndrew, and J. A. Woolliams. 2006. Analysis of the incidence of infectious pancreatic necrosis mortality in pedigreed Atlantic salmon (Salmo salar L.) Populations. Journal of Fish Diseases 29 (11):637–47. doi:10.1111/j.1365-2761.2006.00758.x.
  • Hard, J. J., D. G. Elliott, R. J. Pascho, D. M. Chase, L. K. Park, J. R. Winton, and D. E. Campton. 2006. Genetic effects of ELISA-based segregation for control of bacterial kidney disease in Chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences 63 (12):2793–808. doi:10.1139/f06-163.
  • Hayes, B., M. Baranski, M. E. Goddard, and N. Robinson. 2007. Optimisation of marker assisted selection for abalone breeding programs. Aquaculture 265 (1–4):61–69. doi:10.1016/j.aquaculture.2007.02.016.
  • Henryon, M., P. Berg, N. J. Olesen, T. E. Kjaer, W. J. Slierendrecht, A. Jokumsen, and I. Lund. 2005. Selective breeding provides an approach to increase resistance of rainbow trout (Onchorhynchus mykiss) to the diseases, enteric redmouth disease, rainbow trout fry syndrome, and viral haemorrhagic septicaemia. Aquaculture 250:621–36. doi:10.1016/j.aquaculture.2004.12.022.
  • Henryon, M., A. Jokumsen, P. Berg, I. Lund, P. B. Pedersen, N. J. Olesen, and W. J. Slierendrecht. 2002. Genetic variation for growth rate, feed conversion efficiency, and disease resistance exists within a farmed population of rainbow trout. Aquaculture 209:59–76. doi:10.1016/S0044-8486(01)00729-3.
  • Hollebecq, M. G., B. Faivre, C. Bourmaud, and C. Michel. 1995. Spontaneous bactericidal and complement activities in serum of rainbow trout (Oncorhynchus mykiss) genetically selected for resistance or susceptibility to furunculosis. Fish and Shellfish Immunology 5:407–26. doi:10.1006/fsim.1995.0040.
  • Houston, R. D. 2017. Future directions in breeding for disease resistance in aquaculture species. Revista Brasileira De Zootecnia 46 (6):545–51. doi:10.1590/s1806-92902017000600010.
  • Houston, R. D., C. S. Haley, A. Hamilton, D. R. Guy, A. E. Tinch, J. B. Taggart, B. J. McAndrew, and S. C. Bishop. 2008. Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics 178:1109–15. doi:10.1534/genetics.107.082974.
  • Houston, R. D., J. B. Taggart, T. Cézard, M. Bekaert, N. R. Lowe, A. Downing, R. Talbot, S. C. Bishop, A. L. Archibald, J. E. Bron, et al. 2014. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics 15:90. doi:10.1186/1471-2164-15-90.
  • Jeney, G., and D. P. Anderson. 1993. Enhanced immune response and protection in rainbow trout to Aeromonas salmonicida bacterin following prior immersion in immunostimulants. Fish and Shellfish Immunology 3:51–58. doi:10.1006/fsim.1993.1005.
  • Jhingan, E., R. H. Devlin, and G. K. Iwama. 2003. Disease resistance, stress response and effects of triploidy in growth hormone transgenic (Coho salmon). Journal of Fish Biology 63 (3):806–23. doi:10.1046/j.1095-8649.2003.00194.x.
  • Johnson, N. A., R. L. Vallejo, T. J. Silverstein, J. T. Welch, D. G. Wiens, E. M. Hallerman, and Y. Palti. 2008. Suggestive association of major Histocomp atibility IB genetic marker s with resistance to bacterial cold water disease in rainbow trout (Oncorhynchus mykiss). Marine Biotechnology 10:429–37. doi:10.1007/s10126-007-9080-7.
  • Kachamakova, N. M., I. Irnazarow, H. K. Permentier, H. F. Savelkoul, G. Pilarczyk, and G. F. Wiegertjes. 2006. Genetic differences in natural antibody levels in common carp (Cyprinus carpio L.). Fish and Shellfish Immunology 21 (40):4–413. doi:10.1016/j.fsi.2006.01.005.
  • Karunasagar, I., R. Pai, G. R. Malathi, and L. Karunasagar. 1994. Mass mortality of Penaeus monodon larvae due to antibiotic resistant Vibrio harveyi infection. Aquaculture 128:203–09. doi:10.1016/0044-8486(94)90309-3.
  • Katae, H., K. Kuono, Y. Takase, H. Miyazaki, M. Hashimoto, and M. Shimizu. 1979. The evaluation of piromidic acid as an antibiotic in fish: An in vitro and in vivo study. Journal of Fish Diseases 2:321–35. doi:10.1111/j.1365-2761.1979.tb00174.x.
  • Kautsky, N., P. Ronback, M. Tedengren, and M. Troell. 2000. Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture 191:145–61. doi:10.1016/S0044-8486(00)00424-5.
  • Kettunen, A., and K. T. Fjalestad. 2006. Resistance to vibriosis in Atlantic cod (Gadus morhua L.): First challenge test results. Aquaculture 258:263–69. doi:10.1016/j.aquaculture.2006.04.042.
  • Khoo, S. K., A. Ozaki, F. Nakamura, T. Arakawa, S. Ichimoto, R. Nickolov, T. Sakamoto, T. Akutsu, M. Mochizuki, I. Denda, et al. 2004. Identification of a novel chromosomal region associated with infectious hematopoietic necrosis (IHN) resistance in rainbow trout (Oncorhynchus mykiss). Fish Pathology 39:95–101. doi:10.3147/jsfp.39.95.
  • Kirpichnikov, V. S., K. A. Factorovich, Y. I. Ilyasov, and L. A. Shart. 1979.Selection of common carp (Cyprinus carpio) for resistance to dropsy. Advances in Aquaculture, 628–33. Fishing News Books, Famham, UK.
  • Kjoeglum, S., M. Henryon, T. Aasmundstad, and I. Korsgaard. 2008. Selective breeding can increase resistance of Atlantic salmon to furunculosis, infectious salmon anaemia and infectious pancreatic necrosis. Aquaculture Research 39:498–505. doi:10.1111/j.1365-2109.2008.01904.x.
  • Kolstad, K., P. A. Heuch, B. Gjerde, T. Gjedrem, and R. Salte. 2005. Genetic variation in resistance of Atlantic salmon (Salmo salar) to the salmon louse Lepeophtheirus salmonis. Aquaculture 247 (1–4):145–51. doi:10.1016/j.aquaculture.2005.02.009.
  • Lafferty, K. D., C. D. Harvell, J. M. Conrad, C. S. Friedman, M. L. Kent, A. M. Kuris, E. N. Powell, D. Rondeau, and S. M. Saksida. 2015. Infectious diseases affect marine fisheries and aquaculture economics. Annual Review of Marine Science 7:471–96. doi:10.1146/annurev-marine-010814-015646.
  • LaFrentz, B. R., C. A. Lozano, C. A. Shoemaker, J. C. Garcia, D.-H. Xu, M. Løvoll, and M. Rye. 2016. Controlled challenge experiment demonstrates substantial additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae. Aquaculture 458:134–39. doi:10.1016/j.aquaculture.2016.02.034.
  • Lallias, D., and P. Boudry. 2007. Genetic linkage mapping in the blue mussel (Mytilus edulis) and the European flat oyster (Ostrea edulis), and the search for Quantitative Trait Loci of resistance to a disease in (O. edulis), vol.352, 28. fremer, Plouzane, France.
  • Lallias, D., L. Gomez-Raya, C. S. Haley, I. Arzul, S. Heurtebise, A. R. Beaumont, P. Boudry, and S. Lapègue. 2009. Combining two-stage testing and interval mapping strategies to detect QTL for resistance to bonamiosis in the european flat oyster Ostrea edulis. Marine Biotechnology (New York) 11:570–84. doi:10.1007/s10126-008-9173-y.
  • Lande, R., and R. Thompson. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–56.
  • Langefores, A., J. Lohm, M. Grahn, O. Andersen, and T. V. Schantz. 2001. Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proceedings of the Royal Society of London 268:479–85. doi:10.1098/rspb.2000.1378.
  • Lemos, M. L., C. P. Dopazo, A. E. Toranzo, and J. L. Barja. 1991. Competitive dominance of antibiotic-producing marine bacteria in mixed cultures. Journal of Applied Bacteriology 71:228–32. doi:10.1111/jam.1991.71.issue-3.
  • Lerfall, J., T. Larsson, S. Birkeland, T. Taksdal, P. Dalgaard, S. Afanasyev, M. Bjerke, and T. Mørkøre. 2012. Effect of pancreas disease (PD) on quality attributes of raw and smoked fillets of Atlantic salmon Salmo salar L. Aquaculture 324–325:209–17. doi:10.1016/j.aquaculture.2011.11.003.
  • Liu, S., L. Sun, Y. Li, F. Sun, Y. Jiang, Z. Yu, Z. Jiaren, F. Jianbin, K. Ludmilla, K. Huseyin, et al. 2014. Development of the catfish 250K SNP array for genome-wide association studies. BMC Research Notes 7 (1):135. doi:10.1186/1756-0500-7-135.
  • Liu, Z., and J. Cordes. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238:1–37. doi:10.1016/j.aquaculture.2004.05.027.
  • Lund, T., T. Gjedrem, H. B. Bentsen, D. M. Eide, H. J. S. Larsen, and K. H. Røed. 1995. Genetic variation in immune parameters and associations to survival in Atlantic salmon. Journal of Fish Biology 46:748–58. doi:10.1111/j.1095-8649.1995.tb01598.x.
  • Maroni, K. 2000. Monitoring and regulation of marine aquaculture i n Norway. Journal of Applied Ichthyology 16:192–95. doi:10.1046/j.1439-0426.2000.00256.x.
  • Marsden, M. J., L. C. Freeman, D. Cox, and C. J. Secombes. 1996. Non-specific immune responses in families of Atlantic salmon (Salmo salar) exhibiting differential resistance to furunculosis. Aquaculture 146:1–16. doi:10.1016/S0044-8486(96)01358-0.
  • Martin, K. 2017. Population biology of infectious diseases shared by wild and farmed fish. Canadian Journal of Fisheries and Aquatic Sciences 74 (4):620–28. doi:10.1139/cjfas-2016-0379.
  • Megahed, M. E. 2009.Selection for improved disease resistance in fish. MSc. diss., Universiteit Gent, Faculty of Bioscience Engineering, Ghent, Belgium.
  • Megahed, M. E. 2019. Quantitative genetics of disease resistance in different groups of Penaeus semisulcatus from preliminary controlled challenge test with Vibrio parahaemolyticusthe aetiological agent of acute hepatopancreatic necrosis disease (AHPND). Journal of Applied Aquaculture 31 (1):17–33. doi:10.1080/10454438.2018.1545723.
  • Megahed, M. E., G. Elmesiry, K. Mohamed, and A. K. Dhar. 2018. Genetic parameters of survival in four generations of Indian white shrimp (Fenneropeneaus indicus). Journal of Applied Aquaculture. doi:10.1080/10454438.2018.1551169.
  • Megahed, M. E., S. Ghoneim, G. Desouky, and A. E. L. Dakar. 2013. Major constraints facing development of marine shrimp farming in Egypt. Journal of the Arabian Aquaculture Society 8 (2): 321–330.
  • Megahed, M. E. S. 2016. Selection for disease resistance in Indian white shrimp. Global aquaculture advocate. https://www.aquaculturealliance.org/advocate/selection-for-disease-resistance-in-indian-white-shrimp/.
  • Meuwissen, T., B. Hayes, and M. Goddard. 2013. Accelerating improvement of Livestock with genomic selection. Annual Review Animal Bioscience 1:221–37. doi:10.1146/annurev-animal-031412-103705.
  • Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–29.
  • Meuwissen, T. H. E., J. Odegard, I. Andersen-Ranberg, and E. Grindflek. 2014. On the distance of genetic relationships and the accuracy of genomic prediction in pig breeding. Genetics Selection Evolution 46:49. doi:10.1186/1297-9686-46-49.
  • Meyer, P. F. 1991. aquaculture diease and health managmenet. Journal of Animal Science 69:4201–08. doi:10.2527/1991.69104201x.
  • Michel, C., and M. G. Hollebecq. 1999. Independence of phagocytic activity and susceptibility to furunculosis in families of rainbow trout (Oncorhynchus mykiss) genetically selected for differential resistance. Fish and Shellfish Immunology 9:81–93. doi:10.1006/fsim.1998.0178.
  • Midtlyng, P. J., A. Storset, C. Michel, W. J. Slierendrecht, and N. Okamoto. 2002. Breeding for disease resistance in fish. Bulletin of the European Association of Fish Pathologists 22:166–72.
  • Moen, T., J. J. Agresti, A. Cnaani, H. Moses, T. R. Famula, G. Hulata, G. A. E. Gall, and B. May. 2004. A genome scan of a four-way tilapia cross supports the existence of a quantitative trait locus for cold tolerance on linkage group 23. Aquaculture Research 35:893–904. doi:10.1111/j.1365-2109.2004.01082.x.
  • Moen, T., M. Baranski, A. K. Sonesson, and S. Kjoglum. 2009. Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): Population-level associations between markers and trait. BMC Genomics 10:368. doi:10.1186/1471-2164-10-368.
  • Moen, T., A. K. Sonesson, B. Hayes, S. Lien, H. Munck, and T. Meuwissen. 2007. Mapping of a quantitative trait locus for resistance against infectious salmon anaemia in Atlantic salmon (Salmo salar): Comparing survival analysis with analysis on affected/resistant data. BMC Genetics 8:53. doi:10.1186/1471-2156-8-53.
  • Moen, T., J. Torgersen, N. Santi, W. S. Davidson, M. Baranski, J. Ødegård, S. Kjøglum, B. Velle, M. Kent, K. P. Lubieniecki, et al. 2015. Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genetics 200:1313–26. doi:10.1534/genetics.115.175406.
  • Mohamed, K., M. E. Megahed, and A. M. A. Mervat. 2017. Effect of dietary supplementation of Agrimos® on growth performance, feed utilization and immunological parameters of Macrobrachium rosenbergii juveniles. Aquaculture International 25:1441–52. doi:10.1007/s10499-017-0123-4.
  • Munn, C. B. 1994. The use of recombinant DNA technology in the development of fish vaccines. Fish and Shellfish Immunology 4:459–73. doi:10.1006/fsim.1994.1041.
  • Nguyen, N. H. 2016. Genetic improvement for important farmed aquaculture species with a reference to carp, tilapia and prawns in Asia: Achievements, lessons and challenges. Fish and Fisheries 17:483–506. doi:10.1111/faf.12122.
  • Nichols, K. M., J. Bartholomew, and G. H. horgaard. 2003a. Mapping multiple genetic loci associated with Ceratomyxa shasta resistance in (Oncorhynchus mykiss). Diseases of Aquatic Organisms 56 (2):145–54. doi:10.3354/dao056145.
  • Nichols, K. M., W. P. Young, R. G. Danzmann, B. D. Robinson, C. Rexroad, M. Noakes, R. B. Phillips, P. Bentzen, I. Spies, K. Knudsen, et al. 2003b. A consolidated linkage map for rainbouw trout (Onchorhynchus mykiss). Animal Genetics 34:103–15. doi:10.1046/j.1365-2052.2003.00957.x.
  • Noh, S. H., K. Han, T. H. Won, and Y. J. Choi. 1994. Effect of antibiotics, enzyme, yeast culture and probiotics on the growth performance of Israeli carp. Korean Journal of Animal Science 36:480–86.
  • Ødegård, J., M. Baranski, B. Gjerde, and T. Gjedrem. 2011. Methodology for genetic evaluation of disease resistance in aquaculture species: Challenges and future prospects. Aquaculture Research 42:103–14. doi:10.1111/are.2011.42.issue-s1.
  • Ødegård, J., T. Moen, N. Santi, S. A. Korsvoll, S. Kjøglum, and T. H. E. Meuwissen. 2014. Genomic prediction in an admixed population of Atlantic salmon (Salmo salar). Frontiers in Genetics 5:402.
  • Ødegård, J., I. Olesen, B. Gjerde, and G. Klemetsdal. 2006. Evaluation of statistical models for genetic analysis of challenge test data on furunculosis resistance in Atlantic salmon (Salmo salar): Prediction of field survival. Aquaculture 259:116–23. doi:10.1016/j.aquaculture.2006.05.034.
  • Ødegård, J., I. Olesen, B. Gjerde, and G. Klemetsdal. 2007. positive gentic correlation between resistance to bacterial (Furuculosis) and Viral (infectious salmon anaemia) diseases in farmed Atlantic salmon (Salmo salar). Aquaculture 271:173–77. doi:10.1016/j.aquaculture.2007.06.006.
  • Okamoto, N., T. Tayama, M. Kawanobe, N. Fujiki, Y. Yasuda, and N. Sano. 1993. Resistance of a rainbow trout strain to infectious pancreatic necrosis. Aquaculture 117:71–76. doi:10.1016/0044-8486(93)90124-H.
  • Omasaki, S. K., H. Charo-Karisa, A. K. Kahi, and H. Komen. 2016. Genotype by environment interaction for harvest weight, growth rate and shape between monosex and mixed sex Nile tilapia (Oreochromis niloticus). Aquaculture 458:75–81. doi:10.1016/j.aquaculture.2016.02.033.
  • Ozaki, A., T. Sakamoto, S. Khoo, K. Nakamura, M. R. Coimbra, T. Akutsu, and N. Okamoto. 2001. Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss). Molecular Genetics and Genomics 265:23–31.
  • Palti, Y., G. Gao, S. Liu, M. P. Kent, S. Lien, M. R. Miller, C. E. Rexroad III, and T. Moen. 2015. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout. Molecular Ecology Resources 15:662–72. doi:10.1111/1755-0998.12337.
  • Palti, Y., C. E. Rexroad, T. Welch, G. Weins, J. Silverstein, and R. Vallejo. 2007. Selective breeding and genetic mapping of disease resistance in rainbow trout. Aquaculture 272 (S1):S298. doi:10.1016/j.aquaculture.2007.07.157.
  • Park, S. B., T. Aoki, and T. S. Jung. 2012. Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Veterinary Research 43:67–78. doi:10.1186/1297-9716-43-67.
  • Price, D. J. 1985. Genetics of susceptibility and resistance to diseases in fishes. Journal of Fish Biology 26:509–19. doi:10.1111/j.1095-8649.1985.tb04291.x.
  • Raa, J. G., G. Rorstad, R. Engstad, and B. Robertson. 1992. The use of immunostimulants to increase resistance of aquatic organisms to microbial infections. In Fish health section, ed. M. Shariff, R. P. Subasinghe, and J. R. Arthur, Diseases in Asian Aquaculture. 26– 29 November 1990. Vol. 1, 39–50. Manila, Philippines: Asian Fisheries Society.
  • Ramadan, A., N. A. Afifi, M. M. Moustafa, and A. M. Samy. 1994. The effect of ascogen on the immune response of tilapia fish to Aeromonas hydrophila vaccine. Fish and Shellfish Immunology 4:159–64. doi:10.1006/fsim.1994.1015.
  • Robinson, N., and B. Hayes. 2008. Modelling the use of gene expression profiles with selective breeding for improved disease resistance in Atlantic salmon (Salmo salar). Aquaculture 285 (1–4):38–46. doi:10.1016/j.aquaculture.2008.08.016.
  • Robledo, D., O. Matika, A. Hamilton, and R. D. Houston. 2018. Genome‐wide association and genomic selection for resistance to amoebic gill disease in Atlantic salmon. G3 (Bethesda, Md.) 8:1195–203. doi:10.1534/g3.118.200075.
  • Rodriguez, M. F., S. LaPatra, S. Williams, T. Famula, and B. May. 2004. Genetic markers associated with resistance to infectious hematopoietic necrosis in rainbouw trout and steelhead trout (Onchorhynchus mykiss) backcrosses. Aquaculture 241 (1–4):93–115. doi:10.1016/j.aquaculture.2004.08.003.
  • Røed, K. H., E. Brun, H. J. Larsen, and T. Refstie. 1990. The genetic influence on serum haemolytic activity in rainbow trout. Aquaculture 85:1090–117. doi:10.1016/0044-8486(90)90010-K.
  • Røed, K. H., E. Brun, H. J. Larsen, and T. Refstie. 1992. Genetic variation in serum haemolytic activity in Atlantic salmon (Salmo salar L.). Journal of Fish Biology 40:739–50. doi:10.1111/j.1095-8649.1992.tb02621.x.
  • Røed, K. H., S. E. Fevolden, and K. T. Fjalestad. 2002. Disease resistance and immune characteristics in rainbow trout (Oncorhynchus mykiss) selected for lysozyme activity. Aquaculture 209:91–101. doi:10.1016/S0044-8486(01)00810-9.
  • Røed, K. H., K. T. Fjalestad, and A. Stromsheim. 1993. Genetic variation in lysozyme activity and spontaneous haemolytic activity in Atlantic salmon (Salmo salar). Aquaculture 114:19–31. doi:10.1016/0044-8486(93)90247-V.
  • Rye, M., B. Gjerde, and T. Gjedrem. 2010. Genetic development programs for aquaculture species in developed countries. 9th World Congress on Genetics Applied to Livestock production, 8, Leipzig, Germany, August 1–6.
  • Sae-Lim, P., B. Gjerde, H. M. Nielsen, H. Mulder, and A. Kause. 2016a. A review of genotype-by-environment interaction and micro-environmental sensitivity in aquaculture species. Reviews in Aquaculture 8:369–93. doi:10.1111/raq.12098.
  • Sae-Lim, P., A. Kause, H. A. Mulder, and I. Olesen. 2016b. Selective breeding in aquaculture for future environments under climate change. Proceedings FAO International Symposium on “The Role of Agricultural Biotechnologies in Sustainable Food Systems and Nutrition”, Rome.
  • Sahoo, P. K., K. Das Mahapatra, J. N. Saha, A. Barat, M. Sahoo, B. R. Mohanty, B. Gjerde, J. Ødegård, M. Rye, and R. Salte. 2008. Family association between immune parameters and resistance to Aeromonas hydrophila infection in the Indian major carp (Labeo rohita). Fish and Shellfish Immunology 25:163–69. doi:10.1016/j.fsi.2008.04.003.
  • Sahoo, P. K., P. K. Meher, K. D. Mahapatra, J. N. Saha, R. K. Jana, and P. V. Reddy. 2004. Immune responses in different fullsib families of Indian major carp, Labeo rohita, exhibiting differential resistance to Aeromonas hydrophila infection. Aquaculture 238 (1–4):115–25. doi:10.1016/j.aquaculture.2004.06.008.
  • Saksida, S. M. 2006. Infectious haematopoietic necrosis epidemic (2001 to 2003) in farmed Atlantic salmon Salmo salar in British Columbia. Diseases of Aquatic Organisms 72:213−223. doi:10.3354/dao072213.
  • Salte, R., H. M. Gjøen, K. Norberg, and T. Gjedrem. 1993. Plasma protein levels as potential marker traits for resistance to funmculosis. Journal of Fish Diseases 16:561–68. doi:10.1111/j.1365-2761.1993.tb00892.x.
  • Sarder, M. R. I., K. D. Thompson, D. J. Penman, and B. J. McAndrew. 2001. Immune responses in Nile tilapia (Oreochromis niloticus L.) clones: I.Non-specific responses. Developmental and Comparative Immunology 25:37–46. doi:10.1016/S0145-305X(00)00040-9.
  • Secombes, C. J., and G. Olivier. 1997. Host-pathogen interactions in salmonids. In Furunculosis: Multidisciplinary fish disease research, ed. E. M. Bernoth, A. E. Ellis, P. J. Midtlyng, G. Olivier, and P. Smith, 269–96. London: Academic Press.
  • Serrano, H. 2005. Responsible use of antibiotics in aquaculture. FAO Fisheries Technical Paper. No. 469, 97. FAO, Rome.
  • Smith, C. E., D. Ramsey, C. A. Speer, and A. Blixt. 1997. Histopathology associated with an irido-like virus infection of tilapia. FHS/AFS Newsletter 25:6−9.
  • Smith, P. 2008. Antimicrobial resistance in aquaculture. Revue Scientifique Et Technique 27:243–64. doi:10.20506/rst.27.1.1799.
  • Sonesson, A. K. 2007. Within-family marker-assisted selection for aquaculture species. Genetics Selection Evolution 39:301–17. doi:10.1186/1297-9686-39-3-301.
  • Sonesson, A. K., and T. H. E. Meuwissen. 2009. Testing strategies for genomic selection in aquaculture breeding programs. Genetics Selection Evolution 41:37. doi:10.1186/1297-9686-41-37.
  • Song, L. S., J. H. Xiang, L. C. Zhou, and L. L. Ruiyu. 1999. Studies on genetic variation and phylogenetic relationships among six species of Penaeus genus by RAPD markers. Acta Zoologica Sinica 44:353–59.
  • Standal, M., and B. Gjerde. 1987. Genetic variation in survival of Atlantic salmon during the sea-rearing period. Aquaculture 66:197–207. doi:10.1016/0044-8486(87)90106-2.
  • Storset, A., C. Strand, M. Wetten, S. Kjّoeglum, and A. Ramstad. 2007. Response to selection for resistance against infectious pancreat ic necrosis in Atlantic salmon (Salmo salar L.). Aquaculture 272 (S1):S62 – S68. doi:10.1016/j.aquaculture.2007.08.011.
  • Tan, Z., C. Komar, and W. J. Enright. 2007. Health management practices for cage aquaculture in Asia - a key component for sustainability. http://www.thefishsite.com.
  • Taylor, R. S., J. W. Wynne, P. D. Kube, and N. G. Elliott. 2007. Genetic variation of resistance to amoebic gill disease in Atlantic salmon (Salmo salar) assessed in a challenge system. Aquaculture 272 (S1):S94–S99. doi:10.1016/j.aquaculture.2007.08.007.
  • Tsai, H. Y., A. Hamilton, A. E. Tinch, D. R. Guy, J. E. Bron, J. B. Taggart, K. Gharbi, M. Stear, O. Matika, R. Pong-Wong, et al. 2016. Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations. Genetics Selection Evolution 48:1–11. doi:10.1186/s12711-016-0226-9.
  • Tsai, H. Y., A. Hamilton, A. E. Tinch, D. R. Guy, K. Gharbi, M. J. Stear, O. Matika, S. C. Bishop, and R. D. Houston. 2015. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array. BMC Genomics 16:969. doi:10.1186/s12864-015-2117-9.
  • Vallejo, R. L., Y. Palti, S. Liu, J. P. Evenhuis, G. Gao, C. E. Rexroad III, and G. D. Wiens. 2014. Detection of QTL in rainbow trout affecting survival when challenged with Flavobacterium psychrophilum. Marine Biotechnology (New York) 16:349–60. doi:10.1007/s10126-013-9553-9.
  • Van de Kerk, M., L. C. Jones, O. Saucedo, and K. L. orenzen. 2016. The effect of latitudinal variation on Shrimp reproductive strategies. PLoS One 11 (5):e0155266. doi:10.1371/journal.pone.0155266.
  • Verschuere, L., G. Rombaut, P. Sorgeloos, and W. Verstraete. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews 64:655–71. doi:10.1128/MMBR.64.4.655-671.2000.
  • Vici, V., I. S. Bright Singh, and S. G. Bhat. 2000. Application o f bacterins and yeast Acremonium dyosporii to protect the larvae of (Macrobrachium rosenbergii) from vibriosis. Fish and Shellfish Immunology 10:559–63. doi:10.1006/fsim.2000.0278.
  • Watts, J. E. M., H. J. Schreier, L. Lanska, and M. S. Hale. 2017. The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Marine Drugs 15 (6):158. doi:10.3390/md15060158.
  • Wetten, M., T. Aasmundstad, S. Kjøglum, and A. Storset. 2007. Genetic analysis of resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar L.). Aquaculture 272:111–17. doi:10.1016/j.aquaculture.2007.08.046.
  • Wiegertjes, G. F., R. J. M. Stet, H. K. Parmentier, and W. B. van Muiswinkel. 1996. Immunogenetics of disease resistance in fish: A comparative approach. Developmental and Comparative Immunology 20:365–81. doi:10.1016/S0145-305X(96)00032-8.
  • Wilawan, T., L. Chao, L. Yupeng, H. B. Benjamin, and P. Eric. 2014. l-Rhamnose-binding lectins (RBLs) in channel catfish, Ictalurus punctatus: Characterization and expression profiling in mucosal tissues. Developmental & Comparative Immunology 44:320–31. doi:10.1016/j.dci.2014.01.018.
  • Xu, J., Z. Zhao, X. Zhang, X. Zheng, J. Li, Y. Jiang, Y. Kuang, Y. Zhang, J. Feng, C. Li, et al. 2014. Development and evaluation of the first highthroughput SNP array for common carp (Cyprinus carpio). BMC Genomics 15:307. doi:10.1186/1471-2164-15-307.
  • Yáñez, J. M., R. D. Houston, and S. Newman. 2014. Genetics and genomics of disease resistance in salmonid species. Frontiers in Genetics 5:415.
  • Yáñez, J. M., S. Naswa, M. E. López, L. Bassini, K. Correa, J. Gilbey, L. Bernatchez, A. Norris, J. P. Lhorente, P. S. Schnable, et al. 2016. Genome-wide single nucleotide polymorphism (SNP) discovery in Atlantic salmon (Salmo salar): Validation in wild and farmed American and European populations. Molecular Ecology Resources. doi:10.1111/1755-0998.12503.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.