182
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Muscle amino acid profile of wild and farmed pirarucu (Arapaima gigas) in two size classes and an estimation of their dietary essential amino acid requirements

, , , ORCID Icon &

References

  • Abimorad, E. G., and D. Castellani. 2011. Exigências nutricionais de aminoácidos para o lambari-do-rabo amarelo baseadas na composição da carcaça e do músculo. Boletim Do Instituto De Pesca 37:31–38.
  • Adeyeye, E. I. 2009. Amino acid composition of three species of Nigerian fish: Clarias anguillaris, Oreochromis niloticus and Cynoglossus senegalensis. Food Chemistry 113 (1):43–46. doi:https://doi.org/10.1016/j.foodchem.2008.07.007.
  • Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:32–46.
  • AOAC. 1990. Association of official analytical chemists. Official methods of analysis. 15th ed., 1422. Arlington, VA: Association of Official Analytical Chemists.
  • Bicudo, A. J. A., and J. E. P. Cyrino. 2009. Estimating amino acid requirement of Brazilian freshwater fish from muscle amino acid profile. Journal of the World Aquaculture Society 40 (6):818–23. doi:https://doi.org/10.1111/j.1749-7345.2009.00303.x.
  • Bicudo, A. J. A., and J. E. P. Cyrino. 2014. Evaluation of methods to estimate the essential amino acids requirements of fish from the muscle amino acid profile. Latin American Journal of Aquatic Research 42 (1):271–75. doi:https://doi.org/10.3856/vol42-issue1-fulltext-23.
  • Carani, F. R., B. O. S. Duran, T. G. Paula, W. P. Piedade, and M. D. P. Silva. 2013. Morphology and expression of genes related to skeletal muscle growth in juveniles of pirarucu (Arapaima gigas, Arapaimatidae, Teleostei). Acta Scientiarum 35:219–26.
  • Carvalho, F., M. Power, B. R. Forsberg, L. Castello, E. G. Martins, and C. E. C. Freitas. 2018. Trophic ecology of Arapaima sp. In a ria lake – River – Floodplain transition zone of the Amazon. Ecology of Freshwater Fish 27:237–46. doi:https://doi.org/10.1111/eff.12341.
  • Castello, L., C. Arantes, D. McGrath, D. Stewart, and F. de Souza. 2015. Understanding fishing-induced extinctions in the Amazon. Aquatic Conservation: Marine and Freshwater Ecosystems 25 (5):587–98. doi:https://doi.org/10.1002/aqc.2491.
  • Cipriano, F. S., K. S. Lima, R. H. B. Souza, W. C. T. Tonini, E. B. Passinato, and L. G. T. Braga. 2016. Digestibility of animal and vegetable protein ingredients by pirarucu juveniles. Arapaima Gigas. Revista Brasileira De Zootecnia 45 (10):581–86. doi:https://doi.org/10.1590/S1806-92902016001000001.
  • Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecology 18 (1):117–43. doi:https://doi.org/10.1111/j.1442-9993.1993.tb00438.x.
  • Corsetti, G., E. Pasini, C. Romano, R. Calvani, A. Picca, E. Marzetti, V. Flati, and F. S. Dioguardi. 2018. Body weight loss and tissue wasting in late middle-aged mice on slightly imbalanced essential/non-essential amino acids diet. Frontiers in Medicine 5:1–11. doi:https://doi.org/10.3389/fmed.2018.00136.
  • Cyrino, J. E. P., A. J. A. Bicudo, R. Y. Sado, R. Borghesi, and J. K. Dairiki. 2010. A piscicultura e o ambiente – O uso de alimentos ambientalmente corretos em piscicultura. Revista Brasileira De Zootecnia 39 (suppl spe):68–87. doi:https://doi.org/10.1590/S1516-35982010001300009.
  • Dairiki, J. K., R. Borghesi, C. T. S. Dias, and J. E. P. Cyrino. 2013. Lysine and arginine requirements of Salminus brasiliensis. Pesquisa Agropecuária Brasileira 48 (8):1012–20. doi:https://doi.org/10.1590/S0100-204X2013000800029.
  • Dairiki, J. K., C. T. S. Dias, and J. E. P. Cyrino. 2007. Lysine requirements of Largemouth Bass, Micropterus salmoides: A comparison of methods of analysis of dose-response trials data. Journal of Applied Aquaculture 19 (4):1–27. doi:https://doi.org/10.1300/J028v19n04_01.
  • Diógenes, A. F., J. B. K. Fernandes, J. C. Dorigam, N. K. Sakomura, F. H. F. Rodrigues, B. T. M. Lima, and F. H. Gonçalves. 2016. Establishing the optimal essential amino acid ratios in juveniles of Nile tilapia (Oreochromis niloticus) by the deletion method. Aquaculture Nutrition 22 (2):435–43. doi:https://doi.org/10.1111/anu.12262.
  • Duan, Y., Q. Guo, C. Wen, W. Wang, Y. Li, B. Tan, F. Li, and Y. Yin. 2016. Free amino acid profile and expression of genes implicated in protein metabolism in skeletal muscle of growing pigs fed low-protein diets supplemented with branched-chain amino acids. Journal of Agricultural and Food Chemistry 64 (49):9390–400. doi:https://doi.org/10.1021/acs.jafc.6b03966.
  • El-Sayed, A.-F. M. 2014. Is dietary taurine supplementation beneficial for farmed fish and shrimp? A comprehensive review. Reviews in Aquaculture 6 (4):241–55. doi:https://doi.org/10.1111/raq.12042.
  • FAO. 2012. Food and agriculture organization of the United Nations. Cultured aquatic species information programme. Arapaima gigas. Cultured aquatic species information programme. Rome. Accessed February 14, 2019. www.fao.org/fishery/culturedspecies/Arapaima_gigas/en#tcN80126.
  • FAO/WHO. 1991. Food and agriculture organization of the United Nations. Protein quality evaluation. Report of Joint FAO/WHO Expert Consultation, FAO Food and Nutrition Paper 51. Rome, Italy.
  • Fu, C., Y. Cui, S. S. O. Hung, and Z. Zhu. 2000. Whole-body amino acid pattern of F4 human growth hormone gene-transgenic red common carp (Cyprinus carpio) fed diets with different protein levels. Aquaculture 189 (3–4):287–92. doi:https://doi.org/10.1016/S0044-8486(00)00381-1.
  • Furuya, W. M., M. Michelato, A. L. Salaro, T. P. Cruz, and V. R. Barriviera-Furuya. 2015. Estimation of the dietary essential amino acid requirements of colliroja Astyanax fasciatuas by using the ideal protein concept. Latin American Journal of Aquatic Research 43:888–94.
  • Holeček, M., and M. Vodeničarovová. 2020. Effects of histidine supplementation on amino acid metabolism in rats. Physiological Research 69:99–111. doi:https://doi.org/10.33549/physiolres.934296.
  • Kaushik, S. J. 1998. Whole body amino acid composition of European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata) and turbot (Psetta maxima) with an estimation of their IAA requirement profiles. Aquatic Living Resources 11 (5):355–58. doi:https://doi.org/10.1016/S0990-7440(98)80007-7.
  • Khan, K. U., C. F. M. Mansano, T. M. T. Nascimento, A. Z. Boaratti, A. T. Rodrigues, D. M. A. Queiroz, R. S. Romaneli, N. K. Sakomura, and J. B. K. Fernandes. 2020. Whole-body amino acid pattern of juvenile, preadult, and adult pacu, Piaractus mesopotamicus, with an estimation of its dietary essential amino acid requirements. Journal of the World Aquaculture Society 51 (1):224–34. doi:https://doi.org/10.1111/jwas.12600.
  • Kruskal, J. B. 1964. Nonmetric multidimensional scaling: A numerical method. Psychometrika 29 (2):115–29. doi:https://doi.org/10.1007/BF02289694.
  • Lee, S., K. Masagounder, R. W. Hardy, and B. C. Small. 2019. Effects of lowering dietary fishmeal and crude protein levels on growth performance, body composition, muscle metabolic gene expression, and chronic stress response of rainbow trout (Oncorhynchus mykiss). Aquaculture 513:734435. doi:https://doi.org/10.1016/j.aquaculture.2019.734435.
  • Lima, A. F., A. P. O. Rodrigues, L. K. F. Lima, P. O. Maciel, F. P. Rezende, L. E. L. Freitas, M. Tavares-Dias, and T. A. Bezerra. 2017. Alevinagem, recria e engorda de pirarucu, 152. Brasília: Embrapa.
  • Lima, A. F., A. P. O. Rodrigues, E. S. Varela, L. S. Torati, and P. O. Maciel. 2015. Pirarucu culture in the Brazilian Amazon: Fledgling industry faces technological issues. Global Aquaculture Advocate 18:56–58.
  • Lucas, B., and A. Sotelo. 1980. Effect of different alkalies, temperature, and hydrolysis times on tryptophan determination of pure proteins and of foods. Analytical Biochemistry 109 (1):192–97. doi:https://doi.org/10.1016/0003-2697(80)90028-7.
  • Mambrini, M., and S. J. Kaushik. 1995. Indispensable amino acid requirements of fish: Correspondence between quantitative data and amino acid profiles of tissue proteins. Journal of Applied Ichthyology 11 (3–4):240–47. doi:https://doi.org/10.1111/j.1439-0426.1995.tb00024.x.
  • Mattos, B. O., E. C. T. Nascimento-Filho, A. Anjos-Santos, F. J. Sánchez-Vázquez, and R. Fortes-Silva. 2016. Daily self-feeding activity rhythms and dietary self-selection of pirarucu (Arapaima gigas). Aquaculture 465:152–57. doi:https://doi.org/10.1016/j.aquaculture.2016.09.005.
  • Mattos, B. O., E. C. T. Nascimento-Filho, A. A. Santos, K. A. Barreto, F. J. Sánchez-Vázquez, and R. Fortes-Silva. 2017. A new approach to feed frequency studies and protein intake regulation in juvenile pirarucu. Anais Da Academia Brasileira De Ciências 89 (2):1243–50. doi:https://doi.org/10.1590/0001-3765201720160349.
  • McCune, B., and J. B. Grace. 2002. Analysis of ecological communities, 304. Gleneden Beach, OR: MjM Software Design.
  • Meyer, G., and D. M. Fracalossi. 2005. Estimation of jundiá (Rhamdia quelen) dietary amino acid requirements based on muscle amino acid composition. Scientia Agricola 62 (4):401–05. doi:https://doi.org/10.1590/S0103-90162005000400015.
  • Monentcham, S. E., B. Whatelet, V. Pouomogne, and P. Kestemont. 2010. Egg and whole-body amino acid profile of African bonytongue (Heterotis niloticus) with an estimation of their dietary indispensable amino acids requirements. Fish Physiology and Biochemistry 36 (3):531–38. doi:https://doi.org/10.1007/s10695-009-9323-9.
  • Ning, J., H. Pan, B. Li, and C. Jian. 2018. Nutritional comparison in muscle of wild, pond and factory cultured Japanese flounder (Paralichthys olivaceus) adults. Aquaculture Research 49 (7):2572–78. doi:https://doi.org/10.1111/are.13719.
  • NRC. 2011. Nutrient requirements of fish and shrimp, 376. Washington, DC: The National Academies Press.
  • Núñez, J., F. Chu-Koo, M. Berland, L. Arévalo, O. Ribeyro, F. Duponchelle, and J. F. Renno. 2011. Reproductive success and fry production of the paiche or pirarucu, Arapaima gigas (Schinz), in the region of Iquitos, Perú. Aquaculture Research 42 (6):815–22. doi:https://doi.org/10.1111/j.1365-2109.2011.02886.x.
  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens, et al. 2015. Vegan: Community ecology package version 2.2-1 [online]. Accessed December 16, 2019. http://CRAN.R-project.org/package=vegan.
  • Oliveira, V., S. L. Poleto, and P. C. Venere. 2005. Feeding of juvenile pirarucu (Arapaima gigas, Arapaimidae) in their natural environment, lago Quatro Bocas, Araguaiana-MT, Brazil. Neotropical Ichthyology 3 (2):312–14. doi:https://doi.org/10.1590/S1679-62252005000200010.
  • Portz, L., and J. E. P. Cyrino. 2003. Comparison of the amino acid contents of roe, whole body and muscle tissue and their A/E ratios for largemouth bass Micropterus salmoides (Lacepéde, 1802). Aquaculture Research 34 (8):585–92. doi:https://doi.org/10.1046/j.1365-2109.2003.00834.x.
  • Pyz-Łukasik, R., and W. Paszkiewicz. 2018. Species variations in the proximate composition, amino acid profile, and protein quality of the muscle tissue of grass carp, bighead carp, siberian sturgeon, and wels catfish. Journal of Food Quality 2018:1–8.
  • Pyz-Łukasik, R., M. Szpetnar, W. Paszkiewicz, M. R. Tatara, and A. Brodzki. 2016. Free amino acid content in muscle tissue of bighead carp and wels catfish. Medycyna Weterynaryjna 72 (10):632–36. doi:https://doi.org/10.21521/mw.5571.
  • Queiroz, H. L. 2000. Natural history and conservation of pirarucu, Arapaima gigas, at the Amazonian varzea: Red giants in muddy waters. Thesis (Doctorate in Philosophy), University of St. Andrews, 226p.
  • Rodrigues, A. P. O., G. V. Moro, V. R. V. Santos, L. E. L. Freitas, and D. M. Fracalossi. 2019. Apparent digestibility coefficients of selected protein ingredients for pirarucu Arapaima gigas (Teleostei: Osteoglo ssidae). Latin American Journal of Aquatic Research 47 (2):310–17. doi:https://doi.org/10.3856/vol47-issue2-fulltext-11.
  • Rollin, X., M. Mambrini, T. Abboudi, Y. Larondelle, and S. J. Kaushik. 2003. The optimum dietary indispensable amino acid pattern for growing Atlantic salmon (Salmo salar L.) fry. British Journal of Nutrition 90 (5):865–76. doi:https://doi.org/10.1079/BJN2003973.
  • Saavedra, M., A. Candeias-Mendes, S. Castanho, B. Teixeira, R. Mendes, and P. Pousão-Ferreira. 2015. Amino acid profiles of meagre (Argyrosomus regius) larvae: Towards the formulation of an amino acid balanced diet. Aquaculture 448:315–20. doi:https://doi.org/10.1016/j.aquaculture.2015.06.003.
  • Saint-Paul, U. 1986. Potential for aquaculture of South American freshwater fishes: A review. Aquaculture 54 (3):205–40. doi:https://doi.org/10.1016/0044-8486(86)90329-7.
  • Santos-Cipriano, F., K. S. Lima, É. Bevitório-Passinato, R. M. Jesus, F. O. Magalhães Júnior, W. C. Teles-Tonini, and L. G. Tavares-Braga. 2015. Apparent digestibility of energetic ingredients by pirarucu juveniles, Arapaima gigas (Schinz, 1822). Latin American Journal of Aquatic Research 43:786–91.
  • Schaefer, F., W. Kloas, and S. Würtz. 2012. Arapaima: A candidate for intensive freshwater culture. Global Aquaculture Advocate 15:50–51.
  • Spitze, B. A. R., D. L. Wong, Q. R. Rogers, and A. J. Fascetti. 2003. Taurine concentrations in animal feed ingredients; cooking influences taurine content. Journal of Animal Physiology and Animal Nutrition 87 (7–8):251–62. doi:https://doi.org/10.1046/j.1439-0396.2003.00434.x.
  • Tesser, M. B., E. M. Silva, and L. A. Sampaio. 2014. Whole-body and muscle amino acid composition of Plata pompano (Trachinotus marginatus) and prediction of dietary essential amino acid requirements. Revista Colombiana de Ciencias Pecuarias 27:299–305.
  • Tie, H.-M., P. Wu, W. –. D. Jiang, Y. Liu, S.-Y. Kuang, -Y.-Y. Zeng, J. Jiang, L. Tang, X.-Q. Zhou, and L. Feng. 2019. Dietary nucleotides supplementation affect the physicochemical properties, amino acid and fatty acid constituents, apoptosis and antioxidant mechanisms in grass carp (Ctenopharyngodon idellus) muscle. Aquaculture 502:312–25. doi:https://doi.org/10.1016/j.aquaculture.2018.12.045.
  • Valladão, G. M. R., S. U. Gallani, and F. Pilarski. 2018. South American fish for continental aquaculture. Reviews in Aquaculture 10 (2):351–69. doi:https://doi.org/10.1111/raq.12164.
  • Wang, W., S. Wang, W. Wang, H. Wang, X. Xiang, and X. Zhou. 2018. Effect of dietary energy to protein ratio on growth, biological indices, proximate composition, and amino acid profiles in the muscle of Varicorhinus macrolepis. North American Journal of Aquaculture 80 (2):168–79. doi:https://doi.org/10.1002/naaq.10020.
  • Wang, Y., S. Yu, G. Ma, S. Chen, Y. Shi, and Y. Yang. 2014. Comparative study of proximate composition and amino acid in farmed and wild Pseudobagrus ussuriensis muscles. International Journal of Food Science & Technology 49 (4):983–89. doi:https://doi.org/10.1111/ijfs.12391.
  • White, J., R. Hart, and J. Fry. 1986. An evaluation of the waters pico-tag system for the amino-acid-analysis of food materials. Journal of Automatic Chemistry 8 (4):170–77. doi:https://doi.org/10.1155/S1463924686000330.
  • Wilson, R. P., and W. E. Poe. 1985. Relationship of whole body and egg essential amino acid patterns to amino acid requirement patterns in channel catfish. Ictalurus Punctatus. Comparative Biochemistry and Physiology 80B:385–88.
  • Wu, G., Z. Wu, Z. Dai, Y. Yang, W. Wang, C. Liu, J. Wang, and Y. Yin. 2013. Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids 44:1107–13. doi:https://doi.org/10.1007/s00726-012-1444-2.
  • Zhang, Z., W. Xu, R. Tang, L. Li, M. M. Refaey, and D. Li. 2018. Thermally processed diet greatly affects profiles of amino acids rather than fatty acids in the muscle of carnivorous Silurus Meridionalis. Food Chemistry 256:244–51. doi:https://doi.org/10.1016/j.foodchem.2018.02.066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.